1
|
Lee YJ, Ajiteru O, Lee JS, Lee OJ, Choi KY, Kim SH, Park CH. Highly conductive, stretchable, and biocompatible graphene oxide biocomposite hydrogel for advanced tissue engineering. Biofabrication 2024; 16:045032. [PMID: 39116889 DOI: 10.1088/1758-5090/ad6cf7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
The importance of hydrogels in tissue engineering cannot be overemphasized due to their resemblance to the native extracellular matrix. However, natural hydrogels with satisfactory biocompatibility exhibit poor mechanical behavior, which hampers their application in stress-bearing soft tissue engineering. Here, we describe the fabrication of a double methacrylated gelatin bioink covalently linked to graphene oxide (GO) via a zero-length crosslinker, digitally light-processed (DLP) printable into 3D complex structures with high fidelity. The resultant natural hydrogel (GelGOMA) exhibits a conductivity of 15.0 S m-1as a result of the delocalization of theπ-orbital from the covalently linked GO. Furthermore, the hydrogel shows a compressive strength of 1.6 MPa, and a 2.0 mm thick GelGOMA can withstand a 1.0 kg ms-1momentum. The printability and mechanical strengths of GelGOMAs were demonstrated by printing a fish heart with a functional fluid pumping mechanism and tricuspid valves. Its biocompatibility, electroconductivity, and physiological relevance enhanced the proliferation and differentiation of myoblasts and neuroblasts and the contraction of human-induced pluripotent stem cell-derived cardiomyocytes. GelGOMA demonstrates the potential for the tissue engineering of functional hearts and wearable electronic devices.
Collapse
Affiliation(s)
- Young Jin Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
- CURE 3D, Department of Cardiac Surgery, University Hospital Düsseldorf, Düsseldorf, Nordrhein-Westfalen 40225, Germany
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Kyu Young Choi
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Kangnam, Seoul 07441, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea
| |
Collapse
|
2
|
Luo J, Song T, Han T, Qi H, Liu Q, Wang Q, Song Z, Rojas O. Multifunctioning of carboxylic-cellulose nanocrystals on the reinforcement of compressive strength and conductivity for acrylic-based hydrogel. Carbohydr Polym 2024; 327:121685. [PMID: 38171694 DOI: 10.1016/j.carbpol.2023.121685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Simultaneously having competitive compressive properties, fatigue-resistant stability, excellent conductivity and sensitivity has still remained a challenge for acrylic-based conductive hydrogels, which is critical in their use in the sensor areas where pressure is performed. In this work, an integrated strategy was proposed for preparing a conductive hydrogel based on acrylic acid (AA) and sodium alginate (SA) by addition of carboxylic-cellulose nanocrystals (CNC-COOH) followed by metal ion interaction to reinforce its compressive strength and conductivity simultaneously. The CNC-COOH played a multifunctional role in the hydrogel by well-dispersing SA and AA in the hydrogel precursor solution for forming a uniform semi-interpenetrating network, providing more hydrogen bonds with SA and AA, more -COOH for metal ion interactions to form uniform multi-network, and also offering high modulus to the final hydrogel. Accordingly, the as-prepared hydrogels showed simultaneous excellent compressive strength (up to 3.02 MPa at a strain of 70 %) and electrical conductivity (6.25 S m-1), good compressive fatigue-resistant (93.2 % strength retention after 1000 compressive cycles under 50 % strain) and high sensitivity (gauge factor up to 14.75). The hydrogel strain sensor designed in this work is capable of detecting human body movement of pressing, stretching and bending with highly sensitive conductive signals, which endows it great potential for multi-scenario strain sensing applications.
Collapse
Affiliation(s)
- Jintang Luo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, PR China; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tao Song
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China.
| | - Tingting Han
- Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Qunhua Liu
- China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, PR China
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Zhongqian Song
- Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Orlando Rojas
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
González K, Larraza I, Martin L, Eceiza A, Gabilondo N. Effective reinforcement of plasticized starch by the incorporation of graphene, graphene oxide and reduced graphene oxide. Int J Biol Macromol 2023; 249:126130. [PMID: 37541466 DOI: 10.1016/j.ijbiomac.2023.126130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Plasticized starch (PLS) nanocomposite films using glycerol and reinforced with graphene (G) and graphene oxide (GO) were prepared by solvent casting procedure. On one hand, the influence of adding different G contents into the PLS matrix was analyzed. In order to improve the stability of G nanoflakes in water, Salvia extracts were added as surfactants. The resulting nanocomposites presented improved mechanical properties. A maximum increase of 287 % in Young's modulus and 57 % in tensile strength was achieved for nanocomposites with 5 wt% of G. However, it seemed that Salvia acted as co-plasticizer for the PLS. Moreover, the addition of the highest G content led to an improvement of the electrical conductivity close to 5 × 10-6 S/m compared to the matrix. On the other hand, GO was also incorporated as nanofiller to prepare nanocomposites. Thus, the effect of increasing the GO content in the final behavior of the PLS nanocomposites was evaluated. The characterization of GO containing PLS nanocomposites showed that strong starch/GO interactions and a good dispersion of the nanofiller were achieved. Moreover, the acidic treatment applied for the reduction of the GO was found to be effective, since the electrical conductivity was 150 times bigger than its G containing counterpart.
Collapse
Affiliation(s)
- Kizkitza González
- Department of Chemical and Environmental Engineering, 'Materials+Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain; Department of Graphical Expression and Project Management, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Izaskun Larraza
- Department of Chemical and Environmental Engineering, 'Materials+Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Loli Martin
- Macrobehaviour-Mesostructure-Nanotechnology SGIker Service, Faculty of Engineering of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, Donostia-San Sebastián 20018, Spain
| | - Arantxa Eceiza
- Department of Chemical and Environmental Engineering, 'Materials+Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Nagore Gabilondo
- Department of Chemical and Environmental Engineering, 'Materials+Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain.
| |
Collapse
|
4
|
Toto E, Laurenzi S, Santonicola MG. Recent Trends in Graphene/Polymer Nanocomposites for Sensing Devices: Synthesis and Applications in Environmental and Human Health Monitoring. Polymers (Basel) 2022; 14:1030. [PMID: 35267853 PMCID: PMC8914833 DOI: 10.3390/polym14051030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Graphene-based nanocomposites are largely explored for the development of sensing devices due to the excellent electrical and mechanical properties of graphene. These properties, in addition to its large specific surface area, make graphene attractive for a wide range of chemical functionalization and immobilization of (bio)molecules. Several techniques based on both top-down and bottom-up approaches are available for the fabrication of graphene fillers in pristine and functionalized forms. These fillers can be further modified to enhance their integration with polymeric matrices and substrates and to tailor the sensing efficiency of the overall nanocomposite material. In this review article, we summarize recent trends in the design and fabrication of graphene/polymer nanocomposites (GPNs) with sensing properties that can be successfully applied in environmental and human health monitoring. Functional GPNs with sensing ability towards gas molecules, humidity, and ultraviolet radiation can be generated using graphene nanosheets decorated with metallic or metal oxide nanoparticles. These nanocomposites were shown to be effective in the detection of ammonia, benzene/toluene gases, and water vapor in the environment. In addition, biological analytes with broad implications for human health, such as nucleic bases or viral genes, can also be detected using sensitive, graphene-based polymer nanocomposites. Here, the role of the biomolecules that are immobilized on the graphene nanomaterial as target for sensing is reviewed.
Collapse
Affiliation(s)
- Elisa Toto
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| | - Susanna Laurenzi
- Department of Astronautical Electrical and Energy Engineering, Sapienza University of Rome, Via Salaria 851-881, 00138 Rome, Italy;
| | - Maria Gabriella Santonicola
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| |
Collapse
|
5
|
Pereira AGB, Nunes CS, Rubira AF, Muniz EC, Fajardo AR. Effect of chitin nanowhiskers on mechanical and swelling properties of Gum Arabic hydrogels nanocomposites. Carbohydr Polym 2021; 266:118116. [PMID: 34044933 DOI: 10.1016/j.carbpol.2021.118116] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 01/11/2023]
Abstract
Hydrogels based on biopolymers like Gum Arabic (GA) usually show low applicability due to weak mechanical properties. To overcome this issue, (nano)fillers are utilized as reinforcing agents. Here, GA hydrogels were reinforced by chitin nanowhiskers (CtNWs, aspect ratio of 14) isolated from the biopolymer chitin through acid hydrolysis. Firstly, GA was chemically modified with glycidyl methacrylate (GMA), which allowed its crosslinking by free radical reactions. Next, hydrogel samples containing different concentrations of CtNWs (0-10 wt%) were prepared and fully characterized. Mechanical characterization revealed that 10 wt% of CtNWs promoted an increase of 44% in the Young's modulus and 96% the rupture force values compared to the pristine hydrogel. Overall, all nanocomposites were stiffer and more resistant to elastic deformation. Due to this feature, the swelling capacity of the nanocomposites decreased. GA hydrogel without CtNWs exhibited a swelling degree of 975%, whereas nanocomposites containing CtNWs exhibited swelling degrees under 725%.
Collapse
Affiliation(s)
- Antonio G B Pereira
- Grupo de Materiais Poliméricos e Compósitos (GMPC), Maringá State University, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil; Laboratório de Biopolímeros, Coordenação de Engenharia de Bioprocessos e Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR- DV), Estrada para Boa Esperança, 85660-000 Dois Vizinhos, PR, Brazil.
| | - Cátia S Nunes
- Grupo de Materiais Poliméricos e Compósitos (GMPC), Maringá State University, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Adley F Rubira
- Grupo de Materiais Poliméricos e Compósitos (GMPC), Maringá State University, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Edvani C Muniz
- Grupo de Materiais Poliméricos e Compósitos (GMPC), Maringá State University, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil; Departamento de Química, Universidade Federal do Piauí, 64049-550 Teresina, PI, Brazil; Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Tecnológica Federal do Paraná (UTFPR- LD), Avenida dos Pioneiros, 3131, 86036-370 Londrina, PR, Brazil
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas, Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
6
|
Synthesis of an un-modified gum arabic and acrylic acid based physically cross-linked hydrogels with high mechanical, self-sustainable and self-healable performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111278. [DOI: 10.1016/j.msec.2020.111278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023]
|
7
|
Khan M, Shah LA, Rehman T, Khan A, Iqbal A, Ullah M, Alam S. Synthesis of physically cross-linked gum Arabic-based polymer hydrogels with enhanced mechanical, load bearing and shape memory behavior. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00801-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Ribeiro SC, de Lima HH, Kupfer VL, da Silva CT, Veregue FR, Radovanovic E, Guilherme MR, Rinaldi AW. Synthesis of a superabsorbent hybrid hydrogel with excellent mechanical properties: Water transport and methylene blue absorption profiles. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Haruna MA, Wen D. Stabilization of Polymer Nanocomposites in High-Temperature and High-Salinity Brines. ACS OMEGA 2019; 4:11631-11641. [PMID: 31460270 PMCID: PMC6682011 DOI: 10.1021/acsomega.9b00963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
Stabilization of polymer nanocomposites in aqueous environment with high salinity has been a constant challenge for their applications. This work aimed to improve the stability of graphene oxide (GO) polyacrylamide nanocomposites at high-temperature and high-ionic-strength brines. GO was synthesized via a modified Hummers' method and the copolymer of acrylamide (COPAM) was obtained via free-radical polymerization. The covalent functionalization of COPAM with the partially reduced GO (rGO) was successfully achieved. 1,3-Propane sultone was used to further functionalize the obtained rGO-COPAM composites to accomplish the zwitterionic character on the rGO-COPAM surface to get a material with excellent temperature stability and dispersibility in the presence of high ionic strength brines. The synthesized materials were characterized by 1H NMR, gel permeation chromatography, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy analysis, and so forth. The thermal stability of the dispersion at 80 °C for 120 days was observed by visual inspection and spectroscopic analysis. The results showed that the zwitterionic polymer produced excellent brine stability with GO nanosheets and suggested promising applications of zwitterionic polyacrylamide-GO systems especially for enhanced oil recovery.
Collapse
Affiliation(s)
- Maje Alhaji Haruna
- School of Chemical
and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K.
| | - Dongsheng Wen
- School of Chemical
and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K.
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, P. R.
China
| |
Collapse
|
10
|
Martín C, Martín-Pacheco A, Naranjo A, Criado A, Merino S, Díez-Barra E, Herrero MA, Vázquez E. Graphene hybrid materials? The role of graphene materials in the final structure of hydrogels. NANOSCALE 2019; 11:4822-4830. [PMID: 30816371 DOI: 10.1039/c8nr09728c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Graphene (G), graphene oxide (GO) and graphene quantum dots (GQDs) have been introduced into a three-dimensional polymeric network based on polyacrylamide in order to ascertain the role of each nanomaterial in hydrogels. The hydrogel structure is not affected by the introduction of GQDs, since these nanoparticles do not form part of the polymeric network. G and GO modify the structure of the hydrogels but in a different way. GO seems to interact by hydrogen bonding to form non-homogeneous gels in which the mechanical properties are not markedly improved. However, G takes an active part in the formation of the polymeric network, which leads to improved mechanical properties and stability of the final material to give rise to truly hybrid hydrogels and not mere two-phase composite materials.
Collapse
Affiliation(s)
- Cristina Martín
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Haruna MA, Pervaiz S, Hu Z, Nourafkan E, Wen D. Improved rheology and high-temperature stability of hydrolyzed polyacrylamide using graphene oxide nanosheet. J Appl Polym Sci 2019. [DOI: 10.1002/app.47582] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Maje Alhaji Haruna
- School of Chemical and Process Engineering; University of Leeds; Leeds United Kingdom
| | - Shahid Pervaiz
- School of Chemical and Process Engineering; University of Leeds; Leeds United Kingdom
| | - Zhongliang Hu
- School of Chemical and Process Engineering; University of Leeds; Leeds United Kingdom
| | - Ehsan Nourafkan
- School of Chemical and Process Engineering; University of Leeds; Leeds United Kingdom
| | - Dongsheng Wen
- School of Chemical and Process Engineering; University of Leeds; Leeds United Kingdom
- School of Aeronautic Science and Engineering; Beihang University; Beijing China
| |
Collapse
|
12
|
Gorji M, Karimi M, Mashaiekhi G, Ramazani S. Superabsorbent, Breathable Graphene Oxide-Based Nanocomposite Hydrogel as a Dense Membrane for Use in Protective Clothing. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1466174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M. Gorji
- Young Researchers and Elites club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - M. Karimi
- Textile Eng. Department, Amirkabir University of Technology (AUT), Tehran, Iran
| | - G. Mashaiekhi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - S. Ramazani
- Textile Eng. Department, Amirkabir University of Technology (AUT), Tehran, Iran
| |
Collapse
|
13
|
Wu D, Xu J, Chen Y, Yi M, Wang Q. Gum Arabic: A promising candidate for the construction of physical hydrogels exhibiting highly stretchable, self-healing and tensility reinforcing performances. Carbohydr Polym 2018; 181:167-174. [DOI: 10.1016/j.carbpol.2017.10.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/26/2017] [Accepted: 10/22/2017] [Indexed: 12/21/2022]
|
14
|
Martín C, Merino S, González-Domínguez JM, Rauti R, Ballerini L, Prato M, Vázquez E. Graphene Improves the Biocompatibility of Polyacrylamide Hydrogels: 3D Polymeric Scaffolds for Neuronal Growth. Sci Rep 2017; 7:10942. [PMID: 28887551 PMCID: PMC5591295 DOI: 10.1038/s41598-017-11359-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022] Open
Abstract
In tissue engineering strategies, the design of scaffolds based on nanostructures is a subject undergoing intense research: nanomaterials may affect the scaffolds properties, including their ability to interact with cells favouring cell growth and improving tissue performance. Hydrogels are synthetic materials widely used to obtain realistic tissue constructs, as they resemble living tissues. Here, different hydrogels with varying content of graphene, are synthesised by in situ radical polymerization of acrylamide in aqueous graphene dispersions. Hydrogels are characterised focusing on the contribution of the nanomaterial to the polymer network. Our results suggest that graphene is not a mere embedded nanomaterial within the hydrogels, rather it represents an intrinsic component of these networks, with a specific role in the emergence of these structures. Moreover, a hybrid hydrogel with a graphene concentration of only 0.2 mg mL-1 is used to support the growth of cultured brain cells and the development of synaptic activity, in view of exploiting these novel materials to engineer the neural interface of brain devices of the future. The main conclusion of this work is that graphene plays an important role in improving the biocompatibility of polyacrylamide hydrogels, allowing neuronal adhesion.
Collapse
Affiliation(s)
- Cristina Martín
- Organic Chemistry area, Faculty of Chemical Science and Technology-IRICA, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071, Ciudad Real, Spain
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Sonia Merino
- Organic Chemistry area, Faculty of Chemical Science and Technology-IRICA, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071, Ciudad Real, Spain
| | - Jose M González-Domínguez
- Organic Chemistry area, Faculty of Chemical Science and Technology-IRICA, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071, Ciudad Real, Spain
| | - Rossana Rauti
- International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| | - Laura Ballerini
- International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy.
- Carbon Nanobiotechnology Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, E-48011, Bilbao, Spain.
| | - Ester Vázquez
- Organic Chemistry area, Faculty of Chemical Science and Technology-IRICA, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071, Ciudad Real, Spain.
| |
Collapse
|
15
|
Paredes JI, Villar-Rodil S. Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications. NANOSCALE 2016; 8:15389-413. [PMID: 27518874 DOI: 10.1039/c6nr02039a] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Direct liquid-phase exfoliation of layered materials by means of ultrasound, shear forces or electrochemical intercalation holds enormous promise as a convenient, cost-effective approach to the mass production of two-dimensional (2D) materials, particularly in the form of colloidal suspensions of high quality and micrometer- and submicrometer-sized flakes. Of special relevance due to environmental and practical reasons is the production of 2D materials in aqueous medium, which generally requires the use of certain additives (surfactants and other types of dispersants) to assist in the exfoliation and colloidal stabilization processes. In this context, biomolecules have received, in recent years, increasing attention as dispersants for 2D materials, as they provide a number of advantages over more conventional, synthetic surfactants. Here, we review research progress in the use of biomolecules as exfoliating and dispersing agents for the production of 2D materials. Although most efforts in this area have focused on graphene, significant advances have also been reported with transition metal dichalcogenides (MoS2, WS2, etc.) or hexagonal boron nitride. Particular emphasis is placed on the specific merits of different types of biomolecules, including proteins and peptides, nucleotides and nucleic acids (RNA, DNA), polysaccharides, plant extracts and bile salts, on their role as efficient colloidal dispersants of 2D materials, as well as on the potential applications that have been explored for such biomolecule-exfoliated materials. These applications are wide-ranging and encompass the fields of biomedicine (photothermal and photodynamic therapy, bioimaging, biosensing, etc.), energy storage (Li- and Na-ion batteries), catalysis (e.g., catalyst supports for the oxygen reduction reaction or electrocatalysts for the hydrogen evolution reaction), or composite materials. As an incipient area of research, a number of knowledge gaps, unresolved issues and novel future directions remain to be addressed for biomolecule-exfoliated 2D materials, which will be discussed in the last part of this review.
Collapse
Affiliation(s)
- J I Paredes
- Instituto Nacional del Carbón, INCAR-CSIC, Apartado 73, 33080 Oviedo, Spain.
| | - S Villar-Rodil
- Instituto Nacional del Carbón, INCAR-CSIC, Apartado 73, 33080 Oviedo, Spain.
| |
Collapse
|
16
|
Physicochemical properties and supercapacitor behavior of electrochemically synthesized few layered graphene nanosheets. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3304-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
He C, Cheng C, Nie SQ, Wang LR, Nie CX, Sun SD, Zhao CS. Graphene oxide linked sulfonate-based polyanionic nanogels as biocompatible, robust and versatile modifiers of ultrafiltration membranes. J Mater Chem B 2016; 4:6143-6153. [DOI: 10.1039/c6tb01855f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A GO linked sulfonate-based polyanionic nanogel as a membrane modifier has application potential in clinical hemodialysis and other biomedical therapies.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Sheng-Qiang Nie
- Engineering Technology Research Center for Materials Protection of Wear and Corrosion of Guizhou Province
- University of Guizhou Province
- College of Chemistry and Materials Engineering
- Guiyang University
- China
| | - Ling-Ren Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuan-Xiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shu-Dong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
18
|
He C, Shi ZQ, Cheng C, Nie CX, Zhou M, Wang LR, Zhao CS. Highly swellable and biocompatible graphene/heparin-analogue hydrogels for implantable drug and protein delivery. RSC Adv 2016; 6:71893-71904. [DOI: 10.1039/c6ra14592b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The GO/heparin-analogue hydrogels with hemo- and cyto-compatibility could be used in various biomedical fields, such as drug and protein delivery, tissue regeneration scaffold, and other biomedical systems.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen-Qiang Shi
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuan-Xiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Mi Zhou
- Institute of Textile
- Sichuan University
- Chengdu 610065
- China
| | - Ling-Ren Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
19
|
Auletta JT, LeDonne GJ, Gronborg KC, Ladd CD, Liu H, Clark WW, Meyer TY. Stimuli-Responsive Iron-Cross-Linked Hydrogels That Undergo Redox-Driven Switching between Hard and Soft States. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00142] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jeffrey T. Auletta
- Department of Chemistry and ‡Department of Mechanical and Materials Science
Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gregory J. LeDonne
- Department of Chemistry and ‡Department of Mechanical and Materials Science
Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kai C. Gronborg
- Department of Chemistry and ‡Department of Mechanical and Materials Science
Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Colin D. Ladd
- Department of Chemistry and ‡Department of Mechanical and Materials Science
Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Haitao Liu
- Department of Chemistry and ‡Department of Mechanical and Materials Science
Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - William W. Clark
- Department of Chemistry and ‡Department of Mechanical and Materials Science
Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tara Y. Meyer
- Department of Chemistry and ‡Department of Mechanical and Materials Science
Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
20
|
Uysal Unalan I, Wan C, Trabattoni S, Piergiovanni L, Farris S. Polysaccharide-assisted rapid exfoliation of graphite platelets into high quality water-dispersible graphene sheets. RSC Adv 2015. [DOI: 10.1039/c4ra16947f] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High quality graphene has been obtained by polysaccharide-assisted ultrasonication in aqueous medium. This approach provides an economical, solvent-free, high-yield, and industrially scalable route for new applications of graphene-based nanocomposites.
Collapse
Affiliation(s)
- Ilke Uysal Unalan
- DeFENS
- Department of Food
- Environmental and Nutritional Sciences—Packaging Division
- University of Milan
- 20133 Milan
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing
- WMG
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Silvia Trabattoni
- Department of Materials Science
- University of Milano Bicocca
- 20125 Milan
- Italy
| | - Luciano Piergiovanni
- DeFENS
- Department of Food
- Environmental and Nutritional Sciences—Packaging Division
- University of Milan
- 20133 Milan
| | - Stefano Farris
- DeFENS
- Department of Food
- Environmental and Nutritional Sciences—Packaging Division
- University of Milan
- 20133 Milan
| |
Collapse
|
21
|
Abstract
Graphene, a 2D fullerene, is a unique material because of its exceptional set of properties. This review has been focused on the processing methods and mechanical, electrical, thermal, and fire retardant properties of epoxy/graphene nanocomposites.
Collapse
Affiliation(s)
- Jiacheng Wei
- Department of Mechanical and Construction Engineering
- Faculty of Engineering and Environment
- Northumbria University
- Newcastle upon Tyne NE1 8ST
- UK
| | - Thuc Vo
- Department of Mechanical and Construction Engineering
- Faculty of Engineering and Environment
- Northumbria University
- Newcastle upon Tyne NE1 8ST
- UK
| | - Fawad Inam
- Department of Mechanical and Construction Engineering
- Faculty of Engineering and Environment
- Northumbria University
- Newcastle upon Tyne NE1 8ST
- UK
| |
Collapse
|
22
|
Uysal Unalan I, Cerri G, Marcuzzo E, Cozzolino CA, Farris S. Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector. RSC Adv 2014. [DOI: 10.1039/c4ra01778a] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
23
|
Das S, Irin F, Ma L, Bhattacharia SK, Hedden RC, Green MJ. Rheology and morphology of pristine graphene/polyacrylamide gels. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8633-40. [PMID: 23915342 DOI: 10.1021/am402185r] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Enhancement of toughness in nanomaterial-based hydrogels is a critical metric for many of their engineering applications. Pristine graphene-polyacrylamide (PAM) hydrogels are synthesized via in situ polymerization of acrylamide monomer in PAM-stabilized graphene dispersion. In-situ polymerization leads to the uniform dispersion of the graphene sheets in the hydrogel. The graphene sheets interact with the elastic chains of the hydrogel through physisorption and permit gelation in the absence of any chemical cross-linker. This study represents the first report of pristine graphene as a physical cross-linker in a hydrogel. The properties of the graphene-polymer hydrogel are characterized by rheological measurements and compressive tests, revealing an increase in the storage modulus and toughness of the hydrogels compared to the chemically cross-linked PAM analogues. The physically cross-linked graphene hydrogels also exhibit self-healing properties. These hydrogels prove to be efficient precursors for graphene-PAM aerogels with enhanced electrical conductivity and thermal stability.
Collapse
Affiliation(s)
- Sriya Das
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, United States
| | | | | | | | | | | |
Collapse
|