1
|
Synthesis and characterization of novel semi-IPN nanocomposite hydrogels based on guar gum, partially hydrolyzed poly(acrylamide), and pristine montmorillonite. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03408-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Ianchis R, Ninciuleanu CM, Gifu IC, Alexandrescu E, Nistor CL, Nitu S, Petcu C. Hydrogel-clay Nanocomposites as Carriers for Controlled Release. Curr Med Chem 2020; 27:919-954. [PMID: 30182847 DOI: 10.2174/0929867325666180831151055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
The present review aims to summarize the research efforts undertaken in the last few years in the development and testing of hydrogel-clay nanocomposites proposed as carriers for controlled release of diverse drugs. Their advantages, disadvantages and different compositions of polymers/biopolymers with diverse types of clays, as well as their interactions are discussed. Illustrative examples of studies regarding hydrogel-clay nanocomposites are detailed in order to underline the progressive researches on hydrogel-clay-drug pharmaceutical formulations able to respond to a series of demands for the most diverse applications. Brief descriptions of the different techniques used for the characterization of the obtained complex hybrid materials such as: swelling, TGA, DSC, FTIR, XRD, mechanical, SEM, TEM and biology tests, are also included. Enlightened by the presented data, we can suppose that hydrogel-clay nanocomposites will still be a challenging subject of global assiduous researches. We can dare to dream to an efficient drug delivery platform for the treatment of multiple affection concomitantly, these being undoubtedly like "a tree of life" bearing different kinds of fruits and leaves proper for human healing.
Collapse
Affiliation(s)
- Raluca Ianchis
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Claudia Mihaela Ninciuleanu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Ioana Catalina Gifu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Elvira Alexandrescu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristina Lavinia Nistor
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Sabina Nitu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristian Petcu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| |
Collapse
|
3
|
Fuchs S, Shariati K, Ma M. Specialty Tough Hydrogels and Their Biomedical Applications. Adv Healthc Mater 2020; 9:e1901396. [PMID: 31846228 PMCID: PMC7586320 DOI: 10.1002/adhm.201901396] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Hydrogels have long been explored as attractive materials for biomedical applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties and geometries. Nonetheless, conventional hydrogels suffer from weak mechanical properties, restricting their use in persistent load-bearing applications often required of materials used in medical settings. Thus, the fabrication of mechanically robust hydrogels that can prolong the lifetime of clinically suitable materials under uncompromising in vivo conditions is of great interest. This review focuses on design considerations and strategies to construct such tough hydrogels. Several promising advances in the proposed use of specialty tough hydrogels for soft actuators, drug delivery vehicles, adhesives, coatings, and in tissue engineering settings are highlighted. While challenges remain before these specialty tough hydrogels will be deemed translationally acceptable for clinical applications, promising preliminary results undoubtedly spur great hope in the potential impact this embryonic research field can have on the biomedical community.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Ida S, Harada H, Sakai K, Atsumi K, Tani Y, Tanimoto S, Hirokawa Y. Shape and Size Regulation of Gold Nanoparticles by Poly(N,N-diethylacrylamide) Microgels. CHEM LETT 2017. [DOI: 10.1246/cl.170115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shohei Ida
- Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533
| | - Hiroyuki Harada
- Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533
| | - Kazunobu Sakai
- Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533
| | - Koki Atsumi
- Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533
| | - Yoshiki Tani
- Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533
| | - Satoshi Tanimoto
- Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533
| | - Yoshitsugu Hirokawa
- Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533
| |
Collapse
|
5
|
Yuan N, Xu L, Zhang L, Ye H, Zhao J, Liu Z, Rong J. Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:221-230. [DOI: 10.1016/j.msec.2016.04.074] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/30/2016] [Accepted: 04/21/2016] [Indexed: 12/25/2022]
|
6
|
Jiang H, Zhang G, Xu B, Feng X, Bai Q, Yang G, Li H. Thermosensitive antibacterial Ag nanocomposite hydrogels made by a one-step green synthesis strategy. NEW J CHEM 2016. [DOI: 10.1039/c5nj03608a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Clay nanosheets act as a catalyst and stabilizing agent for rapid in situ synthesis of silver nanoparticles in a hydrogel matrix.
Collapse
Affiliation(s)
- Haoyang Jiang
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Gongzheng Zhang
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Bo Xu
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Xianqi Feng
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Quanming Bai
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Guoli Yang
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Huanjun Li
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
7
|
Zhao LZ, Zhou CH, Wang J, Tong DS, Yu WH, Wang H. Recent advances in clay mineral-containing nanocomposite hydrogels. SOFT MATTER 2015; 11:9229-9246. [PMID: 26435008 DOI: 10.1039/c5sm01277e] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.
Collapse
Affiliation(s)
- Li Zhi Zhao
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Institute of Advanced Catalytic Materials, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Institute of Advanced Catalytic Materials, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. and Key Laboratory of Clay Minerals of Ministry of Land and Resources of The People's Republic of China, Engineering Research Center of Non-metallic Minerals of Zhejiang Province, Zhejiang Institute of Geology and Mineral Resource, Hangzhou 310007, China
| | - Jing Wang
- Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.
| | - Dong Shen Tong
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Institute of Advanced Catalytic Materials, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Wei Hua Yu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Institute of Advanced Catalytic Materials, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Hao Wang
- Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.
| |
Collapse
|
8
|
Haraguchi K. Soft Nanohybrid Materials Consisting of Polymer–Clay Networks. ORGANIC-INORGANIC HYBRID NANOMATERIALS 2014. [DOI: 10.1007/12_2014_287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|