1
|
Jing X, Hu X, Feng P, Liu Y, Yang J. Modification of nanofibrous scaffolds to mimic extracellular matrix in physical and chemical structuring. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Hunan University of Technology Zhuzhou Hunan People's Republic of China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
| | - Xiangshu Hu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Hunan University of Technology Zhuzhou Hunan People's Republic of China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
| | - Peiyong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Hunan University of Technology Zhuzhou Hunan People's Republic of China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Hunan University of Technology Zhuzhou Hunan People's Republic of China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
| | - Jian Yang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Hunan University of Technology Zhuzhou Hunan People's Republic of China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
| |
Collapse
|
2
|
Liu Y, Liu Y, Bai Z, Wang D, Xu Y, Li Q. Nanofibrous polytetrafluoroethylene/poly(ε-caprolactone) membrane with hierarchical structures for vascular patch. J Tissue Eng Regen Med 2022; 16:1163-1172. [PMID: 36330594 DOI: 10.1002/term.3354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/01/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
With the prevalence of cardiovascular diseases, developing cardiovascular supplements is becoming increasingly urgent. The ability of cells to rapidly adhere and proliferate to achieve endothelialization is extremely important for vascular grafts. In this work, we electrospun polytetrafluoroethylene (PTFE) nanofibrous membranes and used induced crystallization to manufacture poly(ε-caprolactone) (PCL) shish-kebab microstructures on PTFE nanofibers to overcome the inertness of PTFE, and promote cell adhesion and proliferation. PCL lamella periodically grew on the surface of PTFE nanofibers yielding a hierarchical structure, which improved the biocompatibility and mechanical properties of the PTFE nanofibrous membrane. The deposition of PCL lamella improved the hydrophilicity of electrospun PTFE nanofibers membrane, leading to good cell proliferation and adhesion. Also, due to the surface inertness of the substrate material PTFE, this PTFE/PCL composite film has good anti-platelet adhesion properties. Furthermore, cell proliferation could be regulated by controlling the integrity of the PCL crystal network. The vascular patch showed similar mechanical properties to natural blood vessels, providing a new strategy for vascular tissue engineering.
Collapse
Affiliation(s)
- Yulu Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China
| | - Ya Liu
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Zhiyuan Bai
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Dongfang Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Yiyang Xu
- Henan NanoNew Material Technology Co., LTD, Zhengzhou, China
| | - Qian Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Lopez Marquez A, Gareis IE, Dias FJ, Gerhard C, Lezcano MF. How Fiber Surface Topography Affects Interactions between Cells and Electrospun Scaffolds: A Systematic Review. Polymers (Basel) 2022; 14:polym14010209. [PMID: 35012232 PMCID: PMC8747153 DOI: 10.3390/polym14010209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023] Open
Abstract
Electrospun scaffolds have a 3D fibrous structure that attempts to imitate the extracellular matrix in order to be able to host cells. It has been reported in the literature that controlling fiber surface topography produces varying results regarding cell–scaffold interactions. This review analyzes the relevant literature concerning in vitro studies to provide a better understanding of the effect that controlling fiber surface topography has on cell–scaffold interactions. A systematic approach following PRISMA, GRADE, PICO, and other standard methodological frameworks for systematic reviews was used. Different topographic interventions and their effects on cell–scaffold interactions were analyzed. Results indicate that nanopores and roughness on fiber surfaces seem to improve proliferation and adhesion of cells. The quality of the evidence is different for each studied cell–scaffold interaction, and for each studied morphological attribute. The evidence points to improvements in cell–scaffold interactions on most morphologically complex fiber surfaces. The discussion includes an in-depth evaluation of the indirectness of the evidence, as well as the potentially involved publication bias. Insights and suggestions about dose-dependency relationship, as well as the effect on particular cell and polymer types, are presented. It is concluded that topographical alterations to the fiber surface should be further studied, since results so far are promising.
Collapse
Affiliation(s)
- Alex Lopez Marquez
- Faculty of Engineering and Health, University of Applied Sciences and Arts, 37085 Göttingen, Germany; (A.L.M.); (C.G.)
| | - Iván Emilio Gareis
- Laboratorio de Cibernética, Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina;
| | - Fernando José Dias
- Research Centre for Dental Sciences CICO, Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Christoph Gerhard
- Faculty of Engineering and Health, University of Applied Sciences and Arts, 37085 Göttingen, Germany; (A.L.M.); (C.G.)
| | - María Florencia Lezcano
- Laboratorio de Cibernética, Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina;
- Research Centre for Dental Sciences CICO, Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4811230, Chile;
- Correspondence:
| |
Collapse
|
4
|
Li Z, Wu T, Chen Y, Gao X, Ye J, Jin Y, Chen B. Oriented homo-epitaxial crystallization of polylactic acid displaying a biomimetic structure and improved blood compatibility. J Biomed Mater Res A 2021; 110:684-695. [PMID: 34651453 DOI: 10.1002/jbm.a.37322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022]
Abstract
Epitaxial crystallization and solid hot-drawing technology were employed to fabricate oriented homo-epitaxial crystallization of polylactic acid (PLA) with nano-topography to enhance its blood compatibility and mechanical characteristics as blood-contacting medical devices. The process involved solid hot stretching the PLA plates. A PLA nutrient solution was then used to immerse the oriented plates to dissolve some of the PLA solutes, ensuring plate integrity. Consequently, the drawing process exponentially enhanced the modulus and tensile strength of the PLA. Orientation and epitaxial crystallization could substantially enhance blood compatibility of PLA by prolonging clotting time and decreasing hemolysis rate, protein adsorption, and platelet activation. The oriented homo-epitaxial crystallization of PLA exhibited a nano-topography and fibrous structure similar to the intimal layer of a blood vessel, and this biomimetic structure was advantageous in decreasing the activation and/or adhesion of platelets.
Collapse
Affiliation(s)
- Zhengqiu Li
- School of Material Science and Engineering, Xihua University, Chengdu, China
| | - Ting Wu
- School of Material Science and Engineering, Xihua University, Chengdu, China
| | - Yueling Chen
- School of Material Science and Engineering, Xihua University, Chengdu, China
| | - Xiaoyan Gao
- Institute of Passive Medical Device Testing, Sichuan Institute for Drug Control, Chengdu, China
| | - Jingbiao Ye
- Research and Development Department, Hengdian Group TOSPO Engineering Plastics, Co., Ltd, Dongyang, China
| | - Ying Jin
- Research and Development Department, Hengdian Group TOSPO Engineering Plastics, Co., Ltd, Dongyang, China
| | - Baoshu Chen
- School of Material Science and Engineering, Xihua University, Chengdu, China
| |
Collapse
|
5
|
Long-term hydrolytic degradation study of polycaprolactone films and fibers grafted with poly(sodium styrene sulfonate): Mechanism study and cell response. Biointerphases 2020; 15:061006. [PMID: 33203213 DOI: 10.1116/6.0000429] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polycaprolactone (PCL) is a widely used biodegradable polyester for tissue engineering applications when long-term degradation is preferred. In this article, we focused on the analysis of the hydrolytic degradation of virgin and bioactive poly(sodium styrene sulfonate) (pNaSS) functionalized PCL surfaces under simulated physiological conditions (phosphate buffer saline at 25 and 37 °C) for up to 120 weeks with the aim of applying bioactive PCL for ligament tissue engineering. Techniques used to characterize the bulk and surface degradation indicated that PCL was hydrolyzed by a bulk degradation mode with an accelerated degradation-three times increased rate constant-for pNaSS grafted PCL at 37 °C when compared to virgin PCL at 25 °C. The observed degradation mechanism is due to the pNaSS grafting process (oxidation and radical polymerization), which accelerated the degradation until 48 weeks, when a steady state is reached. The PCL surface was altered by pNaSS grafting, introducing hydrophilic sulfonate groups that increase the swelling and smoothing of the surface, which facilitated the degradation. After 48 weeks, pNaSS was largely removed from the surface, and the degradation of virgin and pNaSS grafted surfaces was similar. The cell response of primary fibroblast cells from sheep ligament was consistent with the surface analysis results: a better initial spreading of cells on pNaSS surfaces when compared to virgin surfaces and a tendency to become similar with degradation time. It is worthy to note that during the extended degradation process the surfaces were able to continue inducing better cell spreading and preserve their cell phenotype as shown by collagen gene expressions.
Collapse
|
6
|
|
7
|
Chahal S, Kumar A, Hussian FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1308-1355. [DOI: 10.1080/09205063.2019.1630699] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sugandha Chahal
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Anuj Kumar
- Natural Resources Institute Finland (Luke), Espoo, Finland
| | | |
Collapse
|
8
|
|
9
|
Attia AC, Yu T, Gleeson SE, Petrovic M, Li CY, Marcolongo M. A Review of Nanofiber Shish Kebabs and Their Potential in Creating Effective Biomimetic Bone Scaffolds. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0053-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Borah R, Ingavle GC, Sandeman SR, Kumar A, Mikhalovsky S. Electrically conductive MEH-PPV:PCL electrospun nanofibres for electrical stimulation of rat PC12 pheochromocytoma cells. Biomater Sci 2018; 6:2342-2359. [DOI: 10.1039/c8bm00559a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrically conductive, porous, mechanically strong and bioactive electrospun MEH-PPV:PCL nanofibres with blended and core-sheath formulations for enhanced neurite formation and neurite outgrowth.
Collapse
Affiliation(s)
- Rajiv Borah
- Materials Research Laboratory
- Department of Physics
- Tezpur University
- Tezpur
- India
| | - Ganesh C. Ingavle
- Biomaterials and Medical Devices Research Group
- School of Pharmacy and Biomolecular Sciences
- Huxley Building
- University of Brighton
- Brighton BN2 4GJ
| | - Susan R. Sandeman
- Biomaterials and Medical Devices Research Group
- School of Pharmacy and Biomolecular Sciences
- Huxley Building
- University of Brighton
- Brighton BN2 4GJ
| | - Ashok Kumar
- Materials Research Laboratory
- Department of Physics
- Tezpur University
- Tezpur
- India
| | - Sergey Mikhalovsky
- Biomaterials and Medical Devices Research Group
- School of Pharmacy and Biomolecular Sciences
- Huxley Building
- University of Brighton
- Brighton BN2 4GJ
| |
Collapse
|
11
|
Huang A, Peng X, Turng LS. In-situ fibrillated polytetrafluoroethylene (PTFE) in thermoplastic polyurethane (TPU) via melt blending: Effect on rheological behavior, mechanical properties, and microcellular foamability. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.11.053] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Wang X, Gao Y, Xu Y, Li X, Jiang J, Hou J, Han W, Li Q, Shen C. A Prerequisite of the Poly(ε-Caprolactone) Self-Induced Nanohybrid Shish-Kebab Structure Formation: An Ordered Crystal Lamellae Orientation Morphology of Fibers. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaofeng Wang
- National Center for International Research of Micro-Nano Molding Technology; Henan Key Laborotary of Micro Molding Technology; Zhengzhou University; Zhengzhou 450001 China
- School of Mechanics & Engineering Science; Zhengzhou University; Zhengzhou 450001 China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University); Shanghai 200433 China
| | - Yanhong Gao
- School of Materials Science & Engineering; Zhengzhou University; Zhengzhou 450001 China
| | - Yiyang Xu
- National Center for International Research of Micro-Nano Molding Technology; Henan Key Laborotary of Micro Molding Technology; Zhengzhou University; Zhengzhou 450001 China
- School of Mechanics & Engineering Science; Zhengzhou University; Zhengzhou 450001 China
| | - Xuyan Li
- National Center for International Research of Micro-Nano Molding Technology; Henan Key Laborotary of Micro Molding Technology; Zhengzhou University; Zhengzhou 450001 China
- School of Mechanics & Engineering Science; Zhengzhou University; Zhengzhou 450001 China
| | - Jing Jiang
- National Center for International Research of Micro-Nano Molding Technology; Henan Key Laborotary of Micro Molding Technology; Zhengzhou University; Zhengzhou 450001 China
- School of Mechanics & Engineering Science; Zhengzhou University; Zhengzhou 450001 China
| | - Jianhua Hou
- National Center for International Research of Micro-Nano Molding Technology; Henan Key Laborotary of Micro Molding Technology; Zhengzhou University; Zhengzhou 450001 China
- School of Mechanics & Engineering Science; Zhengzhou University; Zhengzhou 450001 China
| | - WenJuan Han
- School of Materials Science & Engineering; Zhengzhou University; Zhengzhou 450001 China
| | - Qian Li
- National Center for International Research of Micro-Nano Molding Technology; Henan Key Laborotary of Micro Molding Technology; Zhengzhou University; Zhengzhou 450001 China
- School of Mechanics & Engineering Science; Zhengzhou University; Zhengzhou 450001 China
| | - Changyu Shen
- National Center for International Research of Micro-Nano Molding Technology; Henan Key Laborotary of Micro Molding Technology; Zhengzhou University; Zhengzhou 450001 China
- School of Mechanics & Engineering Science; Zhengzhou University; Zhengzhou 450001 China
| |
Collapse
|
13
|
Zhang Z, Xu R, Wang Z, Dong M, Cui B, Chen M. Visible-Light Neural Stimulation on Graphitic-Carbon Nitride/Graphene Photocatalytic Fibers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34736-34743. [PMID: 28929741 DOI: 10.1021/acsami.7b12733] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Light stimulation allows remote and spatiotemporally accurate operation that has been applied as effective, noninvasive means of therapeutic interventions. Here, visible-light neural stimulation of graphitic carbon nitride (g-C3N4), an emerging photocatalyst with visible-light optoelectronic conversion, was for the first time investigated. Specifically, g-C3N4 was combined with graphene oxide (GO) in a three-dimensional manner on the surfaces of electrospun polycaprolactone/gelatin (PG) fibers and functioned as a biocompatible interface for visible-light stimulating neuronal differentiation. The enhanced photocatalytic function of g-C3N4 was realized by spreading g-C3N4 on GO coated electrospun (PG) microfibers to improve both charge separation and surface area. Ascorbic acid (AA) was used in the cell culture medium not only as a photoexcited hole scavenger but also as a mediator of GO reduction to further improve the electrical conductivity. The successful coatings of g-C3N4, GO, and AA-mediated GO reduction were confirmed using scanning electron microscopy, photoluminescence, Raman spectroscopy, and X-ray photoelectron spectroscopy. Biocompatibility of g-C3N4 (0.01-0.9 mg/mL) to PC12 cells was confirmed by the lactate dehydrogenase (LDH) assay, Live-Dead staining, and colorimetric cell viability assay CCK-8. Under a bidaily, monochromatic light stimulation at a wavelength of 450 nm at 10 mW/cm2, a 18.5-fold increase of neurite outgrowth of PC12 was found on g-C3N4-coated fibers, while AA-reduced GO-g-C3N4 hybrid brought a further 2.6-fold increase, suggesting its great potential as a visible-light neural stimulator that could optically enhance neural growth in a spatiotemporal-specific manner.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Interdisciplinary Nanoscience Center and ‡Department of Engineering, Aarhus University , DK-8000 Aarhus C, Denmark
- Department of Chemistry and ∥School of Medicine, Stanford University , Stanford, California 94305, United States
| | - Ruodan Xu
- Interdisciplinary Nanoscience Center and ‡Department of Engineering, Aarhus University , DK-8000 Aarhus C, Denmark
- Department of Chemistry and ∥School of Medicine, Stanford University , Stanford, California 94305, United States
| | - Zegao Wang
- Interdisciplinary Nanoscience Center and ‡Department of Engineering, Aarhus University , DK-8000 Aarhus C, Denmark
- Department of Chemistry and ∥School of Medicine, Stanford University , Stanford, California 94305, United States
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center and ‡Department of Engineering, Aarhus University , DK-8000 Aarhus C, Denmark
- Department of Chemistry and ∥School of Medicine, Stanford University , Stanford, California 94305, United States
| | - Bianxiao Cui
- Interdisciplinary Nanoscience Center and ‡Department of Engineering, Aarhus University , DK-8000 Aarhus C, Denmark
- Department of Chemistry and ∥School of Medicine, Stanford University , Stanford, California 94305, United States
| | - Menglin Chen
- Interdisciplinary Nanoscience Center and ‡Department of Engineering, Aarhus University , DK-8000 Aarhus C, Denmark
- Department of Chemistry and ∥School of Medicine, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
14
|
Park JH, Rutledge GC. 50th Anniversary Perspective: Advanced Polymer Fibers: High Performance and Ultrafine. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00864] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jay Hoon Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Gregory C. Rutledge
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Zehetmeyer G, Meira SMM, Scheibel JM, de Brito da Silva C, Rodembusch FS, Brandelli A, Soares RMD. Biodegradable and antimicrobial films based on poly(butylene adipate-co-terephthalate) electrospun fibers. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1896-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
|
17
|
Si J, Cui Z, Wang Q, Liu Q, Liu C. Biomimetic composite scaffolds based on mineralization of hydroxyapatite on electrospun poly(ɛ-caprolactone)/nanocellulose fibers. Carbohydr Polym 2016; 143:270-8. [PMID: 27083369 DOI: 10.1016/j.carbpol.2016.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/24/2022]
Abstract
A biomimetic nanocomposite scaffold with HA formation on the electrospun poly(ɛ-caprolactone) (PCL)/nanocellulose (NC) fibrous matrix was developed in this study. The electrospun PCL/NC fiber mat was built and then biomineralized by treatment in simulated body fluid (SBF). Using such a rapid and effective procedure, a continuous biomimetic crystalline HA layer could be successfully formed without the need of any additional chemical modification of the substrate surface. The results showed that the introduction of NC into composite fibers is an effective approach to induce the deposition of HA nucleus as well as to improve their distribution and growth of a crystalline HA layer on the fibrous scaffolds. The water contact angle (WCA) of the PCL/NC/HA scaffolds decreases with increasing NC content and mineralization time, resulting in the enhancement of their hydrophilicity. These results indicated that HA-mineralized on PCL/NC fiber can be prepared directly by simply using SBF immersion.
Collapse
Affiliation(s)
- Junhui Si
- School of Materials Science and Engineering, Zhengzhou University, Henan 450001, China; School of Materials Science and Engineering, Fujian University of Technology, Fujian 350118, China
| | - Zhixiang Cui
- School of Materials Science and Engineering, Fujian University of Technology, Fujian 350118, China; National Center for International Research of Micro-nano Molding Technology & Key Laboratory for Micro Molding Technology of Henan Province, Henan 450001, China.
| | - Qianting Wang
- School of Materials Science and Engineering, Fujian University of Technology, Fujian 350118, China
| | - Qiong Liu
- School of Materials Science and Engineering, Fujian University of Technology, Fujian 350118, China
| | - Chuntai Liu
- School of Materials Science and Engineering, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
18
|
Jing X, Mi HY, Wang XC, Peng XF, Turng LS. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6955-65. [PMID: 25761418 DOI: 10.1021/acsami.5b00900] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this work, scaffolds with a shish-kebab (SK) structure formed by poly(ε-caprolactone) (PCL) nanofibers and chitosan-PCL (CS-PCL) copolymers were prepared via electrospinning and subsequent crystallization for bone tissue engineering applications. The aim of this study was to introduce nanosized topography and the high biocompatibility of chitosan onto PCL nanofibers to enhance cell affinity to PCL scaffolds. CS-PCL copolymers with various ratios were synthesized, and then spontaneously crystallized as kebabs onto the electrospun PCL fibers, which acted as shishes. Scanning electron microscopy (SEM) results demonstrated that the copolymer with PCL to chitosan ratio of 8.8 could hierarchically decorate the PCL nanofibers and formed well-shaped kebabs on the PCL nanofiber surface. Water contact angle tests and biomimetic activity experiments revealed that the shish-kebab scaffolds with CS-PCL kebabs (PCL-SK(CS-PCL(8.8))) showed enhanced hydrophilicity and mineralization ability compared with smooth PCL and PCL-SK(PCL) shish-kebab scaffolds. Osteoblast-like MG63 cells cultured on the PCL-SK(CS-PCL(8.8)) scaffolds showed optimizing cell attachment, cell viability, and metabolic activity, demonstrating that this kind of scaffold has potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Xin Jing
- †National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory for Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- ‡Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Hao-Yang Mi
- †National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory for Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- ‡Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Xin-Chao Wang
- §National Engineering Research Center for Advanced Polymer Processing Technologies, Zhengzhou University, Zhengzhou, 450002, China
| | - Xiang-Fang Peng
- †National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory for Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Lih-Sheng Turng
- ‡Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| |
Collapse
|