1
|
Dallaev R. Advances in Materials with Self-Healing Properties: A Brief Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2464. [PMID: 38793530 PMCID: PMC11123491 DOI: 10.3390/ma17102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The development of materials with self-healing capabilities has garnered considerable attention due to their potential to enhance the durability and longevity of various engineering and structural applications. In this review, we provide an overview of recent advances in materials with self-healing properties, encompassing polymers, ceramics, metals, and composites. We outline future research directions and potential applications of self-healing materials (SHMs) in diverse fields. This review aims to provide insights into the current state-of-the-art in SHM research and guide future efforts towards the development of innovative and sustainable materials with enhanced self-repair capabilities. Each material type showcases unique self-repair mechanisms tailored to address specific challenges. Furthermore, this review investigates crack healing processes, shedding light on the latest developments in this critical aspect of self-healing materials. Through an extensive exploration of these topics, this review aims to provide a comprehensive understanding of the current landscape and future directions in self-healing materials research.
Collapse
Affiliation(s)
- Rashid Dallaev
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, Czech Republic
| |
Collapse
|
2
|
Mottoul M, Giljean S, Pac M, Landry V, Morin J. Self‐healing polyacrylate coatings with dynamic H‐bonds between urea groups. J Appl Polym Sci 2023. [DOI: 10.1002/app.53853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Marie Mottoul
- Département de chimie and Centre de Recherche sur les Matériaux Avancés (CERMA), 1045 Ave de la Médecine Université Laval Québec Canada
- NSERC‐Canlak Industrial Research Chair in Interior Wood Product Finishes and Centre de Recherche sur les Matériaux Renouvelables (CRMR), Département des sciences du bois et de la forêt, 2425 rue de la Terrasse Université Laval Québec Canada
| | - Sylvain Giljean
- Laboratoire de Physique et Mécanique Textiles (UR 4365) Université de Haute‐Alsace Mulhouse France
| | - Marie‐José Pac
- Laboratoire de Physique et Mécanique Textiles (UR 4365) Université de Haute‐Alsace Mulhouse France
| | - Véronic Landry
- NSERC‐Canlak Industrial Research Chair in Interior Wood Product Finishes and Centre de Recherche sur les Matériaux Renouvelables (CRMR), Département des sciences du bois et de la forêt, 2425 rue de la Terrasse Université Laval Québec Canada
| | - Jean‐François Morin
- Département de chimie and Centre de Recherche sur les Matériaux Avancés (CERMA), 1045 Ave de la Médecine Université Laval Québec Canada
| |
Collapse
|
3
|
|
4
|
Diels-Alder-based thermo-reversibly crosslinked polymers: Interplay of crosslinking density, network mobility, kinetics and stereoisomerism. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Joseph JP, Miglani C, Singh A, Gupta D, Pal A. Photoresponsive chain collapse in a flexo-rigid functional copolymer to modulate the self-healing behaviour. SOFT MATTER 2020; 16:2506-2515. [PMID: 32090231 DOI: 10.1039/d0sm00033g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic systems mimicking the natural self-folding process are attractive to impart multiple structural control over polymer crosslinking and the subsequent alteration of their macroscopic self-healing properties. In that regard, polymers P1-P5 containing pendant photo-crosslinkable moieties were designed and underwent intra- or interchain collapse to form diverse nanostructures. The shape and dimension of the nanostructures could be efficiently controlled by the concentration, solvent compatibility and characteristics of the polymers. Photodimerization of the coumarin moieties transformed the extended coiled chain of the polymer to uniform sized nanoparticles in a dilute condition, while in the crowded macromolecular concentration regime, the polymer folded into nanostructures with polydisperse topologies that were far from a condensed globule or partially swollen globule conformation. Scaling law exponents for polymer chain compaction suggested an interchain collapse with rigid compact segments connected by flexible polymer chains that draws an analogy with elastomers. Such a hardening of the rigid segment as a consequence of photodimerization rendered a significant increase in the glass transition temperature (Tg), which could be reversibly controlled upon decrosslinking. Lastly, the structural variation of this class of polymers over self-healing was explored and the crosslinked polymers showed phototriggered non-autonomic and intrinsic self-healing behaviour under ambient conditions. This is an interesting approach to access a photomodulated self-healing system with low Tg polymers that shows the coexistence of autonomic and nonautonomic self-healing pathways and that may find application in designing smart coatings for photovoltaic devices.
Collapse
Affiliation(s)
- Jojo P Joseph
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India.
| | - Chirag Miglani
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India.
| | - Ashmeet Singh
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India.
| | - Deepika Gupta
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India.
| | - Asish Pal
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India.
| |
Collapse
|
6
|
Kinetic model of a Diels–Alder reaction in a molten state: thermal and viscoelastic behaviour. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Dzhardimalieva GI, Yadav BC, Singh S, Uflyand IE. Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives. Dalton Trans 2020; 49:3042-3087. [DOI: 10.1039/c9dt04360h] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent achievements and problems associated with the use of metallopolymers as self-healing and shape memory materials are presented and evaluated.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers
- The Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russian Federation
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory
- Department of Physics
- Babasaheb Bhimrao Ambedkar University
- Lucknow-226025
- India
| | - Shakti Singh
- Nanomaterials and Sensors Research Laboratory
- Department of Physics
- Babasaheb Bhimrao Ambedkar University
- Lucknow-226025
- India
| | - Igor E. Uflyand
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- 344006 Russian Federation
| |
Collapse
|
8
|
Kuhl N, Abend M, Geitner R, Vitz J, Zechel S, Schmitt M, Popp J, Schubert U, Hager M. Urethanes as reversible covalent moieties in self-healing polymers. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Geitner R, Legesse FB, Kuhl N, Bocklitz TW, Zechel S, Vitz J, Hager M, Schubert US, Dietzek B, Schmitt M, Popp J. Do You Get What You See? Understanding Molecular Self-Healing. Chemistry 2018; 24:2493-2502. [PMID: 29266504 DOI: 10.1002/chem.201705836] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Indexed: 11/11/2022]
Abstract
The self-healing ability of self-healing materials is often analyzed using morphologic microscopy images. Here it was possible to show that morphologic information alone is not sufficient to judge the status of a self-healing process and molecular information is required as well. When comparing molecular coherent anti-Stokes Raman scattering (CARS) and morphological laser reflection images during a standard scratch healing test of an intrinsic self-healing polymer network, it was found that the morphologic closing of the scratch and the molecular crosslinking of the material do not take place simultaneously. This important observation can be explained by the fact that the self-healing process of the thiol-ene based polymer network is limited by the mobility of alkene-containing compounds, which can only be monitored by molecular CARS microscopy and not by standard morphological imaging. Additionally, the recorded CARS images indicate a mechanochemical activation of the self-healing material by the scratching/damaging process, which leads to an enhanced self-healing behavior in the vicinity of the scratch.
Collapse
Affiliation(s)
- Robert Geitner
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Fisseha-Bekele Legesse
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Natascha Kuhl
- Institute for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Thomas W Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute for Photonic Technology (IPHT) Jena, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Stefan Zechel
- Institute for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Jürgen Vitz
- Institute for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Martin Hager
- Institute for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Institute for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.,Leibniz Institute for Photonic Technology (IPHT) Jena, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.,Leibniz Institute for Photonic Technology (IPHT) Jena, Albert-Einstein-Str. 9, 07745, Jena, Germany
| |
Collapse
|
10
|
Das S, Samitsu S, Nakamura Y, Yamauchi Y, Payra D, Kato K, Naito M. Thermo-resettable cross-linked polymers for reusable/removable adhesives. Polym Chem 2018. [DOI: 10.1039/c8py01495g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reusable and removable adhesives have been synthesized using dynamic Diels–Alder chemistry with high lap shear strength, good reusability and easy removability.
Collapse
Affiliation(s)
- Sandip Das
- Data-driven Polymer Design Group
- Research and Services Division of Materials Data and Integrated System
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Sadaki Samitsu
- Data-driven Polymer Design Group
- Research and Services Division of Materials Data and Integrated System
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Yasuyuki Nakamura
- Data-driven Polymer Design Group
- Research and Services Division of Materials Data and Integrated System
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Yoshihiro Yamauchi
- International Center for Young Scientists (ICYS)
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Debabrata Payra
- International Center for Young Scientists (ICYS)
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Kazuaki Kato
- Data-driven Polymer Design Group
- Research and Services Division of Materials Data and Integrated System
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Masanobu Naito
- Data-driven Polymer Design Group
- Research and Services Division of Materials Data and Integrated System
- National Institute for Materials Science
- Tsukuba
- Japan
| |
Collapse
|
11
|
Fuhrmann A, Broi K, Hecht S. Lowering the Healing Temperature of Photoswitchable Dynamic Covalent Polymer Networks. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/30/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Anne Fuhrmann
- Department of Chemistry & IRIS Adlershof Humboldt‐Universität zu Berlin Brook‐Taylor Str. 2 12489 Berlin Germany
| | - Kevin Broi
- Department of Chemistry & IRIS Adlershof Humboldt‐Universität zu Berlin Brook‐Taylor Str. 2 12489 Berlin Germany
| | - Stefan Hecht
- Department of Chemistry & IRIS Adlershof Humboldt‐Universität zu Berlin Brook‐Taylor Str. 2 12489 Berlin Germany
| |
Collapse
|
12
|
Xie Q, Zhou X, Ma C, Zhang G. Self-Cross-Linking Degradable Polymers for Antifouling Coatings. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00557] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Qianni Xie
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xi Zhou
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
13
|
Kuhl N, Geitner R, Vitz J, Bode S, Schmitt M, Popp J, Schubert US, Hager MD. Increased stability in self-healing polymer networks based on reversible Michael addition reactions. J Appl Polym Sci 2017. [DOI: 10.1002/app.44805] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Natascha Kuhl
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7 Jena 07743 Germany
| | - Robert Geitner
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena; Helmholtzweg 4 Jena 07743 Germany
| | - Jürgen Vitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7 Jena 07743 Germany
| | - Stefan Bode
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7 Jena 07743 Germany
| | - Michael Schmitt
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena; Helmholtzweg 4 Jena 07743 Germany
| | - Jürgen Popp
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena; Helmholtzweg 4 Jena 07743 Germany
- Leibniz Institute for Photonic Technology (IPHT) Jena; Albert-Einstein-Str. 9 Jena 07745 Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7 Jena 07743 Germany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7 Jena 07743 Germany
| |
Collapse
|
14
|
A new reactive polymethacrylate bearing pendant furfuryl groups: Synthesis, thermoreversible reactions, and self-healing. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Jung S, Kim SY, Kim JC, Noh SM, Oh JK. Ambient temperature induced Diels–Alder crosslinked networks based on controlled methacrylate copolymers for enhanced thermoreversibility and self-healability. RSC Adv 2017. [DOI: 10.1039/c7ra04222a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An effective thermoreversible crosslinked network fabricated at ambient temperature from a new, controlled methacrylate copolymer having reactive maleimide pendants and a trifunctional furan (TFu) exhibiting effective self-healability.
Collapse
Affiliation(s)
- Sungmin Jung
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| | - So Young Kim
- Research Center for Green Fine Chemicals
- Korea Research Institute of Chemical Technology
- Ulsan 44412
- Republic of Korea
| | - Jin Chul Kim
- Research Center for Green Fine Chemicals
- Korea Research Institute of Chemical Technology
- Ulsan 44412
- Republic of Korea
| | - Seung Man Noh
- Research Center for Green Fine Chemicals
- Korea Research Institute of Chemical Technology
- Ulsan 44412
- Republic of Korea
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
16
|
Kuhl N, Geitner R, Bose RK, Bode S, Dietzek B, Schmitt M, Popp J, Garcia SJ, van der Zwaag S, Schubert US, Hager MD. Self-Healing Polymer Networks Based on Reversible Michael Addition Reactions. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600353] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Natascha Kuhl
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Robert Geitner
- Institute for Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
| | - Ranjita K. Bose
- Novel Aerospace Materials section; Delft University of Technology; Kluyverweg 1 2629 HS Delft The Netherlands
| | - Stefan Bode
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Benjamin Dietzek
- Institute for Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute for Photonic Technology (IPHT) Jena; Albert-Einstein-Str. 9 07745 Jena Germany
| | - Michael Schmitt
- Institute for Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
| | - Jürgen Popp
- Institute for Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute for Photonic Technology (IPHT) Jena; Albert-Einstein-Str. 9 07745 Jena Germany
| | - Santiago J. Garcia
- Novel Aerospace Materials section; Delft University of Technology; Kluyverweg 1 2629 HS Delft The Netherlands
| | - Sybrand van der Zwaag
- Novel Aerospace Materials section; Delft University of Technology; Kluyverweg 1 2629 HS Delft The Netherlands
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
17
|
Arunbabu D, Noh SM, Nam JH, Oh JK. Thermoreversible Self-Healing Networks Based on a Tunable Polymethacrylate Crossslinker Having Pendant Maleimide Groups. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600330] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dhamodaran Arunbabu
- Department of Chemistry and Biochemistry; Centre for NanoScience Research; Concordia UniversityMontreal; Quebec H4B 1R6 Canada
| | - Seung Man Noh
- Research Center for Green Fine Chemicals; Korea Research Institute of Chemical Technology; Ulsan 681-310 Republic of Korea
| | - Joon Hyun Nam
- Research Center for Green Fine Chemicals; Korea Research Institute of Chemical Technology; Ulsan 681-310 Republic of Korea
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry; Centre for NanoScience Research; Concordia UniversityMontreal; Quebec H4B 1R6 Canada
| |
Collapse
|
18
|
Kuhl N, Abend M, Bode S, Schubert US, Hager MD. Oxime crosslinked polymer networks: Is every reversible covalent bond suitable to create self-healing polymers? J Appl Polym Sci 2016. [DOI: 10.1002/app.44168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Natascha Kuhl
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 Jena 07743 Germany
| | - Marcus Abend
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 Jena 07743 Germany
| | - Stefan Bode
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 Jena 07743 Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 Jena 07743 Germany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 Jena 07743 Germany
| |
Collapse
|
19
|
Scheiner M, Dickens TJ, Okoli O. Progress towards self-healing polymers for composite structural applications. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.11.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Geitner R, Kötteritzsch J, Siegmann M, Fritzsch R, Bocklitz TW, Hager MD, Schubert US, Gräfe S, Dietzek B, Schmitt M, Popp J. Molecular self-healing mechanisms between C60-fullerene and anthracene unveiled by Raman and two-dimensional correlation spectroscopy. Phys Chem Chem Phys 2016; 18:17973-82. [DOI: 10.1039/c6cp03464k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C60-fullerene–anthracene self-healing copolymers were studied by time-, temperature- and concentration-dependent FT-Raman spectroscopy and advanced 2D correlation analysis.
Collapse
|
21
|
Turkenburg D, Fischer H. Diels-Alder based, thermo-reversible cross-linked epoxies for use in self-healing composites. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.031] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
|
23
|
|
24
|
Kuhl N, Bode S, Hager MD, Schubert US. Self-Healing Polymers Based on Reversible Covalent Bonds. SELF-HEALING MATERIALS 2015. [DOI: 10.1007/12_2015_336] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
25
|
Characterization of Self-Healing Polymers: From Macroscopic Healing Tests to the Molecular Mechanism. SELF-HEALING MATERIALS 2015. [DOI: 10.1007/12_2015_341] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Geitner R, Kötteritzsch J, Siegmann M, Bocklitz TW, Hager MD, Schubert US, Gräfe S, Dietzek B, Schmitt M, Popp J. Two-dimensional Raman correlation spectroscopy reveals molecular structural changes during temperature-induced self-healing in polymers based on the Diels–Alder reaction. Phys Chem Chem Phys 2015; 17:22587-95. [DOI: 10.1039/c5cp02151k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For the first time two-dimensional Raman correlation analysis has been used to study self-healing polymers based on the Diels–Alder reaction.
Collapse
Affiliation(s)
- R. Geitner
- Institute for Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- Jena
- Germany
| | - J. Kötteritzsch
- Laboratory for Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - M. Siegmann
- Institute for Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- Jena
- Germany
| | - T. W. Bocklitz
- Institute for Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- Jena
- Germany
| | - M. D. Hager
- Laboratory for Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - U. S. Schubert
- Laboratory for Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - S. Gräfe
- Institute for Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- Jena
- Germany
| | - B. Dietzek
- Institute for Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - M. Schmitt
- Institute for Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- Jena
- Germany
| | - J. Popp
- Institute for Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| |
Collapse
|