1
|
Snyder Y, Todd M, Jana S. Substrates with Tunable Hydrophobicity for Optimal Cell Adhesion. Macromol Biosci 2024; 24:e2400196. [PMID: 39177156 DOI: 10.1002/mabi.202400196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Electrospinning is a technique used to create nano/micro-fibrous materials from various polymers for biomedical uses. Polymers like polycaprolactone (PCL) are commonly used, but their hydrophobic properties can limit their applications. To enhance hydrophilicity, nonionic surfactants such as sorbitane monooleate (Span80) and poloxamer (P188) can be added to the PCL electrospinning solution without altering its net charge density. These additions enable the successful production of PCL/P188 and PCL/Span80 fibrous substrates. In this study, P188 and Span80 are incorporated into the PCL solutions; they are successfully electrospun into PCL/P188 and PCL/Span80 substrates, respectively. PCL/P188 substrates show that until a specific P188 concentration, fiber and pore sizes are similar to PCL substrates. However, exceeding 0.30% P188 concentration enlarges fibers, impacting fiber uniformity at higher concentrations. Conversely, higher concentrations of Span80 result in thicker, less uniform fibers, indicating potential disruptions in the electrospinning process. Notably, both surfactants significantly improve substrate hydrophilicity, enhancing the adhesion and proliferation of fibroblasts, endothelial cells, and smooth muscle cells. P188, in particular, shows superior efficacy in promoting cell adhesion and growth at concentrations optimized for different cell types. Therefore, precise surfactant concentrations in the electrospinning solution can lead to the optimization of electrospun substrates for tissue engineering applications.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| | - Mary Todd
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Shanto PC, Tae H, Ali MY, Jahan N, Jung HI, Lee BT. Dual-layer nanofibrous PCL/gelatin membrane as a sealant barrier to prevent postoperative pancreatic leakage. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-18. [PMID: 39292636 DOI: 10.1080/09205063.2024.2402135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Post-operative pancreatic leakage is a severe surgical complication that can cause internal bleeding, infections, multiple organ damage, and even death. To prevent pancreatic leakage and enhance the protection of the suture lining and tissue regeneration, a dual-layer nanofibrous membrane composed of synthetic polymer polycaprolactone (PCL) and biopolymer gelatin was developed. The fabrication of this dual-layer (PGI-PGO) membrane was achieved through the electrospinning technique, with the inner layer (PGI) containing 2% PCL (w/v) and 10% gelatin (w/v), and the outer layer (PGO) containing 10% PCL (w/v) and 10% gelatin (w/v) in mixing ratios of 2:1 and 1:1, respectively. Experimental results indicated that a higher gelatin content reduced fiber diameter enhanced the hydrophilicity of the PGI layer compared to the PGO layer, improved the membrane's biodegradability, and increased its adhesive properties. In vitro biocompatibility assessments with L929 fibroblast cells showed enhanced cell proliferation in the PGI-PGO membrane. In vivo studies confirmed that the PGI-PGO membrane effectively protected the suture line without any instances of leakage and promoted wound healing within four weeks post-surgery. In conclusion, the nanofibrous PGI-PGO membrane demonstrates a promising therapeutic potential to prevent postoperative pancreatic leakage.
Collapse
Affiliation(s)
- Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Heyjin Tae
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Md Yousuf Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Nusrat Jahan
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hae Il Jung
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
- Department of General Surgery, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
3
|
Liu Z, Shi J, Chen L, He X, Weng Y, Zhang X, Yang DP, Yu H. 3D printing of fish-scale derived hydroxyapatite/chitosan/PCL scaffold for bone tissue engineering. Int J Biol Macromol 2024; 274:133172. [PMID: 38880458 DOI: 10.1016/j.ijbiomac.2024.133172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
In the field of bone tissue repair, the treatment of bone defects has always posed a significant challenge. In recent years, the advancement of bone tissue engineering and regenerative medicine has sparked great interest in the development of innovative bone grafting materials. In this study, a novel hydroxyapatite (HA) material was successfully prepared and comprehensively characterized. Antimicrobial experiments and biological evaluations were conducted to determine its efficacy. Based on the aforementioned research findings, 3D printing technology was employed to fabricate HA/chitosan (CS)/ polycaprolactone (PCL) scaffolds. The composition of the scaffold materials was confirmed through X-ray diffractometer (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) tests, while the influence of different HA ratios on the scaffold surface morphology was observed. Additionally, antimicrobial experiments demonstrated the favorable antimicrobial activity of the scaffolds containing 30%HA + 5%CS + PCL. Furthermore, the water contact angle measurements confirmed the superhydrophilicity of the scaffolds. Finally, the excellent bioactivity and ability to promote tissue regeneration of the scaffolds were further confirmed by in vitro and in vivo experiments. This study provides new options for future repair and regeneration of bone tissue and clinical applications.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China
| | - Jinnan Shi
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China
| | - Lingying Chen
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China
| | - Xiaoyu He
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China
| | - Yiyong Weng
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China
| | - Xiaoyan Zhang
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Da-Peng Yang
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China; Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China..
| | - Haiming Yu
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China.
| |
Collapse
|
4
|
Shanto PC, Fahad MAA, Jung HI, Park M, Kim H, Bae SH, Lee BT. Multi-functional dual-layer nanofibrous membrane for prevention of postoperative pancreatic leakage. Biomaterials 2024; 307:122508. [PMID: 38394713 DOI: 10.1016/j.biomaterials.2024.122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Postoperative pancreatic leakage due to pancreatitis in patients is a life-threatening surgical complication. The majority of commercial barriers are unable to meet the demands for pancreatic leakage due to poor adhesiveness, toxicity, and inability to degrade. In this study, we fabricated mitomycin-c and thrombin-loaded multifunctional dual-layer nanofibrous membrane with a combination of alginate, PCL, and gelatin to resolve the leakage due to suture line disruption, promote hemostasis, wound healing, and prevent postoperative tissue adhesion. Electrospinning was used to fabricate the dual-layer system. The study results demonstrated that high gelatin and alginate content in the inner layer decreased the fiber diameter and water contact angle, and crosslinking allowed the membrane to be more hydrophilic, making it highly biodegradable, and adhering firmly to the tissue surfaces. The results of in vitro biocompatibility and hemostatic assay revealed that the dual-layer had a higher cell proliferation and showed effective hemostatic properties. Moreover, the in vivo studies and in silico molecular simulation indicated that the dual layer was covered at the wound site, prevented suture disruption and leakage, inhibited hemorrhage, and reduced postoperative tissue adhesion. Finally, the study results proved that dual-layer multifunctional nanofibrous membrane has a promising therapeutic potential in preventing postoperative pancreatic leakage.
Collapse
Affiliation(s)
- Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hae Il Jung
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea; Department of General Surgery, Soonchunhyang University Hospital, Cheonan, Republic of Korea.
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyeyoung Kim
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea; Department of General Surgery, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Sang Ho Bae
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea; Department of General Surgery, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea.
| |
Collapse
|
5
|
Zhang H, Lan D, Wu B, Chen X, Li X, Li Z, Dai F. Electrospun Piezoelectric Scaffold with External Mechanical Stimulation for Promoting Regeneration of Peripheral Nerve Injury. Biomacromolecules 2023. [PMID: 37329512 DOI: 10.1021/acs.biomac.3c00311] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2Tx (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo.
Collapse
Affiliation(s)
- Haiqiang Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Dongwei Lan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Baiqing Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiang Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xia Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Diedkova K, Pogrebnjak AD, Kyrylenko S, Smyrnova K, Buranich VV, Horodek P, Zukowski P, Koltunowicz TN, Galaszkiewicz P, Makashina K, Bondariev V, Sahul M, Čaplovičová M, Husak Y, Simka W, Korniienko V, Stolarczyk A, Blacha-Grzechnik A, Balitskyi V, Zahorodna V, Baginskiy I, Riekstina U, Gogotsi O, Gogotsi Y, Pogorielov M. Polycaprolactone-MXene Nanofibrous Scaffolds for Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892008 DOI: 10.1021/acsami.2c22780] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
New conductive materials for tissue engineering are needed for the development of regenerative strategies for nervous, muscular, and heart tissues. Polycaprolactone (PCL) is used to obtain biocompatible and biodegradable nanofiber scaffolds by electrospinning. MXenes, a large class of biocompatible 2D nanomaterials, can make polymer scaffolds conductive and hydrophilic. However, an understanding of how their physical properties affect potential biomedical applications is still lacking. We immobilized Ti3C2Tx MXene in several layers on the electrospun PCL membranes and used positron annihilation analysis combined with other techniques to elucidate the defect structure and porosity of nanofiber scaffolds. The polymer base was characterized by the presence of nanopores. The MXene surface layers had abundant vacancies at temperatures of 305-355 K, and a voltage resonance at 8 × 104 Hz with the relaxation time of 6.5 × 106 s was found in the 20-355 K temperature interval. The appearance of a long-lived component of the positron lifetime was observed, which was dependent on the annealing temperature. The study of conductivity of the composite scaffolds in a wide temperature range, including its inductive and capacity components, showed the possibility of the use of MXene-coated PCL membranes as conductive biomaterials. The electronic structure of MXene and the defects formed in its layers were correlated with the biological properties of the scaffolds in vitro and in bacterial adhesion tests. Double and triple MXene coatings formed an appropriate environment for cell attachment and proliferation with mild antibacterial effects. A combination of structural, chemical, electrical, and biological properties of the PCL-MXene composite demonstrated its advantage over the existing conductive scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Kateryna Diedkova
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Alexander D Pogrebnjak
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Department of Motor Vehicles, Lublin University of Technology, Nadbystrzycka 38 A, Lublin 20-618, Poland
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Sergiy Kyrylenko
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
| | - Kateryna Smyrnova
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, Trnava 917 24, Slovakia
| | | | - Pawel Horodek
- Henryk Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, 152 Radzikowskiego Street, Krakow 31-342, Poland
| | - Pawel Zukowski
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Tomasz N Koltunowicz
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Piotr Galaszkiewicz
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Kristina Makashina
- East-Kazakhstan State Technical University, D. Serikbayev Street, 19, Ust-Kamenogorsk 070000, Kazakhstan
| | - Vitaly Bondariev
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Martin Sahul
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, Trnava 917 24, Slovakia
| | - Maria Čaplovičová
- Centre for Nanodiagnostics of Materials, Slovak University of Technology in Bratislava, 5 Vazovova Street, Bratislava 812 43, Slovakia
| | - Yevheniia Husak
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Viktoriia Korniienko
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Agnieszka Stolarczyk
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Agata Blacha-Grzechnik
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Vitalii Balitskyi
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Veronika Zahorodna
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Ivan Baginskiy
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Una Riekstina
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Oleksiy Gogotsi
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Yury Gogotsi
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Maksym Pogorielov
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| |
Collapse
|
7
|
Shadman-Manesh V, Gholipour-Kanani A, Najmoddin N, Rabbani S. Preclinical evaluation of the polycaprolactone-polyethylene glycol electrospun nanofibers containing egg-yolk oil for acceleration of full thickness burns healing. Sci Rep 2023; 13:919. [PMID: 36650249 PMCID: PMC9845205 DOI: 10.1038/s41598-023-28065-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Considering the great potential of egg yolk oil (EYO) in management of burn wounds and superb biological properties of polycaprolactone (PCL) and polyethylene glycol (PEG), hereby, a PCL-PEG-EYO scaffold was developed by electrospinning method for burn healing. The physico-chemical characterizations were performed using SEM, FTIR and contact angle tests. The biological properties of the fabricated scaffolds were evaluated by antibacterial test, in vitro cell culturing, MTT assay and in vivo experiments. The SEM images of PCL-PEG-EYO nanofibers demonstrated a uniform bead-free morphology with 191 ± 61 nm diameter. The fabricated scaffold revealed hydrophilicity with the water contact angel of 77°. No cytotoxicity was observed up to 7 days after cell culturing onto the PCL-PEG-EYO nanofibrous surface. The presence of EYO in the PCL-PEG-EYO scaffold meaningfully improved the cell viability, proliferation and attachment compared to PCL-PEG scaffold. Moreover, the PCL-PEG-EYO scaffolds demonstrated antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa bacteria strain. Finally, a statistically significant enhancement in wound closure, re-epithelialization, angiogenesis and collagen synthesis was observed at the end of 21-day treatment period using PCL-PEG-EYO nanofibrous scaffold. Overall, the PCL-PEG-EYO nanofibrous scaffolds demonstrated a great potential in management of full thickness burn wounds in vivo.
Collapse
Affiliation(s)
- Vida Shadman-Manesh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Adeleh Gholipour-Kanani
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran.
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Rabbani
- Research Center of Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
8
|
Kaur T, Joshi A, Singh N. Natural cocktail of bioactive factors conjugated on nanofibrous dressing for improved wound healing. BIOMATERIALS ADVANCES 2022; 143:213163. [PMID: 36327826 DOI: 10.1016/j.bioadv.2022.213163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Any interference in the timely and orderly progression through all the phases of healing process can turn a minor injury into a chronic wound. Most of the wound dressings available in the market are moderately effective and have not shown satisfactory improvement in healing. Along with the appropriate wound management, it is imperative for a dressing to facilitate the wound repair process too. In the present research, we hypothesize to improve the wound healing process by applying cost effective natural cocktail of various bioactive factors. Bovine colostrum contains high levels of immunoglobulins, lactoferrin, hormones and cytokines which play significant role in wound healing. Hence, multifunctional colostrum conjugated PCL-PEG based nanofibrous dressings were developed and analyzed for their physicochemical properties and cellular responses. The dressings were also evaluated for cell migration, antioxidant, anti-inflammatory and anti-bacterial properties. In-vivo wound healing ability was validated on a rat wound model. Numerous growth factors present in the colostrum showed their role in stimulation of skin repair and regeneration by direct action on genetic material. Significantly less inflammation in colostrum treated wounds was observed due to anti-inflammatory properties of lactoferrin. Thus obtained results confirmed the suitability of these multifunctional colostrum conjugated nanofibrous dressings for improved wound healing.
Collapse
Affiliation(s)
- Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akshay Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
9
|
Bhagyasree K, Mukherjee D, Azamthulla M, Debnath S, Sundar LM, Hulikal S, Teja BV, Bhatt S, Kamnoore D. Thiolated sodium alginate/polyethylene glycol/hydroxyapatite nanohybrid for bone tissue engineering. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Haghdoost F, Bahrami SH, Barzin J, Ghaee A. Development of biocompatible co-electrospun polyethersulfone/polyvinylpyrrolidone-Y zeolite hybrid nanofiber. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2118274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Fatemeh Haghdoost
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - S. Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Jalal Barzin
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Song Z, Wang J, Tan S, Gao J, Wang L. Conductive biomimetic bilayer fibrous scaffold for skin regeneration. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials 2022; 288:121699. [PMID: 35995620 DOI: 10.1016/j.biomaterials.2022.121699] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Lumbar fusion often remains the last treatment option for various acute and chronic spinal conditions, including infectious and degenerative diseases. Placement of a cage in the intervertebral space has become a routine clinical treatment for spinal fusion surgery to provide sufficient biomechanical stability, which is required to achieve bony ingrowth of the implant. Routinely used cages for clinical application are made of titanium (Ti) or polyetheretherketone (PEEK). Ti has been used since the 1980s; however, its shortcomings, such as impaired radiographical opacity and higher elastic modulus compared to bone, have led to the development of PEEK cages, which are associated with reduced stress shielding as well as no radiographical artefacts. Since PEEK is bioinert, its osteointegration capacity is limited, which in turn enhances fibrotic tissue formation and peri-implant infections. To address shortcomings of both of these biomaterials, interdisciplinary teams have developed biodegradable cages. Rooted in promising preclinical large animal studies, a hollow cylindrical cage (Hydrosorb™) made of 70:30 poly-l-lactide-co-d, l-lactide acid (PLDLLA) was clinically studied. However, reduced bony integration and unfavourable long-term clinical outcomes prohibited its routine clinical application. More recently, scaffold-guided bone regeneration (SGBR) with application of highly porous biodegradable constructs is emerging. Advancements in additive manufacturing technology now allow the cage designs that match requirements, such as stiffness of surrounding tissues, while providing long-term biomechanical stability. A favourable clinical outcome has been observed in the treatment of various bone defects, particularly for 3D-printed composite scaffolds made of medical-grade polycaprolactone (mPCL) in combination with a ceramic filler material. Therefore, advanced cage design made of mPCL and ceramic may also carry initial high spinal forces up to the time of bony fusion and subsequently resorb without clinical side effects. Furthermore, surface modification of implants is an effective approach to simultaneously reduce microbial infection and improve tissue integration. We present a design concept for a scaffold surface which result in osteoconductive and antimicrobial properties that have the potential to achieve higher rates of fusion and less clinical complications. In this review, we explore the preclinical and clinical studies which used bioresorbable cages. Furthermore, we critically discuss the need for a cutting-edge research program that includes comprehensive preclinical in vitro and in vivo studies to enable successful translation from bench to bedside. We develop such a conceptual framework by examining the state-of-the-art literature and posing the questions that will guide this field in the coming years.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
13
|
Baghersad S, Hivechi A, Bahrami SH, Brouki Milan P, Siegel RA, Amoupour M. Optimal Aloe vera encapsulated PCL/Gel nanofiber design for skin substitute application and the evaluation of its in vivo implantation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Gruppuso M, Guagnini B, Musciacchio L, Bellemo F, Turco G, Porrelli D. Tuning the Drug Release from Antibacterial Polycaprolactone/Rifampicin-Based Core-Shell Electrospun Membranes: A Proof of Concept. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27599-27612. [PMID: 35671365 PMCID: PMC9946292 DOI: 10.1021/acsami.2c04849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The employment of coaxial fibers for guided tissue regeneration can be extremely advantageous since they allow the functionalization with bioactive compounds to be preserved and released with a long-term efficacy. Antibacterial coaxial membranes based on poly-ε-caprolactone (PCL) and rifampicin (Rif) were synthesized here, by analyzing the effects of loading the drug within the core or on the shell layer with respect to non-coaxial matrices. The membranes were, therefore, characterized for their surface properties in addition to analyzing drug release, antibacterial efficacy, and biocompatibility. The results showed that the lower drug surface density in coaxial fibers hinders the interaction with serum proteins, resulting in a hydrophobic behavior compared to non-coaxial mats. The air-plasma treatment increased their hydrophilicity, although it induced rifampicin degradation. Moreover, the substantially lower release of coaxial fibers influenced the antibacterial efficacy, tested against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Indeed, the coaxial matrices were inhibitory and bactericidal only against S. aureus, while the higher release from non-coaxial mats rendered them active even against E. coli. The biocompatibility of the released rifampicin was assessed too on murine fibroblasts, revealing no cytotoxic effects. Hence, the presented coaxial system should be further optimized to tune the drug release according to the antibacterial effectiveness.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Benedetta Guagnini
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Luigi Musciacchio
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Francesca Bellemo
- Department
of Engineering and Architecture, University
of Trieste, Via Alfonso
Valerio 6/1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Davide Porrelli
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| |
Collapse
|
15
|
Hou J, Zhou G, Hu J, Wang Y, Gao S. Preparation and evaluation of PLA/PVP core–shell microparticles mat via single capillary electrospraying as a potential drug-loading material. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03613-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Xiong F, Wei S, Sheng H, Han X, Jiang W, Zhang Z, Li B, Xuan H, Xue Y, Yuan H. In situ polydopamine functionalized poly-L-lactic acid nanofibers with near-infrared-triggered antibacterial and reactive oxygen species scavenging capability. Int J Biol Macromol 2022; 201:338-350. [PMID: 35032490 DOI: 10.1016/j.ijbiomac.2022.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
Abstract
The development of a new multi-functional poly(L)-lactide (PLLA) nanofibrous scaffold with excellent antibacterial and reactive oxygen species (ROS) scavenging capability is quite important in tissue engineering. In this study, polydopamine (PDA)/PLLA nanofibers were prepared by combining electrospinning and post in-situ polymerization. The post in-situ polymerization of PDA on the PLLA nanofiber enable PDA uniformly distribute on PLLA nanofiber surface. PDA/PLLA nanofibrous composites also achieved stronger mechanical strength, hydrophilicity, good oxidation resistance and enhanced near-infrared photothermal effect. The near-infrared photothermal effect from PDA made the PDA/PLLA a good antibacterial material. The in vitro ROS scavenging ability of the PDA made PDA/PLLA be beneficial to damaged tissue repair. These results indicate that PDA/PLLA nanofibrous scaffold can be used as a tissue engineering scaffold material with versatile biomedical applications.
Collapse
Affiliation(s)
- Feng Xiong
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Shuo Wei
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Han Sheng
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Xiang Han
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Wei Jiang
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Zhuojun Zhang
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Biyun Li
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Hongyun Xuan
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Ye Xue
- School of Life Sciences, Nantong University, 226019 Nantong, China.
| | - Huihua Yuan
- School of Life Sciences, Nantong University, 226019 Nantong, China.
| |
Collapse
|
17
|
Matschegewski C, Kohse S, Markhoff J, Teske M, Wulf K, Grabow N, Schmitz KP, Illner S. Accelerated Endothelialization of Nanofibrous Scaffolds for Biomimetic Cardiovascular Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2014. [PMID: 35329466 PMCID: PMC8955317 DOI: 10.3390/ma15062014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023]
Abstract
Nanofiber nonwovens are highly promising to serve as biomimetic scaffolds for pioneering cardiac implants such as drug-eluting stent systems or heart valve prosthetics. For successful implant integration, rapid and homogeneous endothelialization is of utmost importance as it forms a hemocompatible surface. This study aims at physicochemical and biological evaluation of various electrospun polymer scaffolds, made of FDA approved medical-grade plastics. Human endothelial cells (EA.hy926) were examined for cell attachment, morphology, viability, as well as actin and PECAM 1 expression. The appraisal of the untreated poly-L-lactide (PLLA L210), poly-ε-caprolactone (PCL) and polyamide-6 (PA-6) nonwovens shows that the hydrophilicity (water contact angle > 80°) and surface free energy (<60 mN/m) is mostly insufficient for rapid cell colonization. Therefore, modification of the surface tension of nonpolar polymer scaffolds by plasma energy was initiated, leading to more than 60% increased wettability and improved colonization. Additionally, NH3-plasma surface functionalization resulted in a more physiological localization of cell−cell contact markers, promoting endothelialization on all polymeric surfaces, while fiber diameter remained unaltered. Our data indicates that hydrophobic nonwovens are often insufficient to mimic the native extracellular matrix but also that they can be easily adapted by targeted post-processing steps such as plasma treatment. The results achieved increase the understanding of cell−implant interactions of nanostructured polymer-based biomaterial surfaces in blood contact while also advocating for plasma technology to increase the surface energy of nonpolar biostable, as well as biodegradable polymer scaffolds. Thus, we highlight the potential of plasma-activated electrospun polymer scaffolds for the development of advanced cardiac implants.
Collapse
Affiliation(s)
- Claudia Matschegewski
- Institute for Implant Technology and Biomaterials e.V., Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (C.M.); (K.-P.S.)
| | - Stefanie Kohse
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| | - Jana Markhoff
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| | - Michael Teske
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| | - Katharina Wulf
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| | - Klaus-Peter Schmitz
- Institute for Implant Technology and Biomaterials e.V., Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (C.M.); (K.-P.S.)
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| | - Sabine Illner
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| |
Collapse
|
18
|
Meng W, Wang J, Zhao J, Gao J, Tan Z, Li X. Preparation and properties of enhanced lightweight nanofibrous membrane‐based desiccant. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weidan Meng
- School of Materials Design and Engineering Beijing Institute of Fashion Technology Beijing China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment Beijing Engineering Research Center of Textile Nanofiber Beijing China
| | - Jiaona Wang
- School of Materials Design and Engineering Beijing Institute of Fashion Technology Beijing China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment Beijing Engineering Research Center of Textile Nanofiber Beijing China
| | - Jingli Zhao
- School of Materials Design and Engineering Beijing Institute of Fashion Technology Beijing China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment Beijing Engineering Research Center of Textile Nanofiber Beijing China
| | - Jie Gao
- School of Materials Design and Engineering Beijing Institute of Fashion Technology Beijing China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment Beijing Engineering Research Center of Textile Nanofiber Beijing China
| | - Zhaoyue Tan
- School of Materials Design and Engineering Beijing Institute of Fashion Technology Beijing China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment Beijing Engineering Research Center of Textile Nanofiber Beijing China
| | - Xiuyan Li
- School of Materials Design and Engineering Beijing Institute of Fashion Technology Beijing China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment Beijing Engineering Research Center of Textile Nanofiber Beijing China
| |
Collapse
|
19
|
Deshmukh SB, Kulandainathan AM, Murugavel K. A review on Biopolymer-derived Electrospun Nanofibers for Biomedical and Antiviral Applications. Biomater Sci 2022; 10:4424-4442. [DOI: 10.1039/d2bm00820c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unique aspects of polymer-derived nanofibers provide significant potential in the area of biomedical and health care applications. Much research has demonstrated several plausible nanofibers to overcome the modern-day challenges in...
Collapse
|
20
|
Al-Wafi R. Polycaprolactone-based antibacterial nanofibrous containing vanadium/hydroxyapatite with morphology, mechanical properties, and in vitro studies. NEW J CHEM 2022. [DOI: 10.1039/d1nj02249k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Repairing the damaged wound tissues is a vital demand to keep an adequate clinical care system. In this work, nanofibrous scaffolds of polycaprolactone (PCL) have been encapsulated with hydroxyapatite (HAP)...
Collapse
|
21
|
Song S, Kim KY, Lee SH, Kim KK, Lee K, Lee W, Jeon H, Ko SH. Recent Advances in 1D Nanomaterial‐Based Bioelectronics for Healthcare Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sangmin Song
- Applied Nano and Thermal Science Lab Department of Mechanical Engineering Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 151-742 Korea
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Kyung Yeun Kim
- Applied Nano and Thermal Science Lab Department of Mechanical Engineering Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 151-742 Korea
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Sun Hee Lee
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Kyun Kyu Kim
- Department of Chemical Engineering Stanford University Stanford CA 94305 USA
| | - Kyungwoo Lee
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Wonryung Lee
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Hojeong Jeon
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
- KU-KIST Graduate School of Converging Science and Technology Korea University 145, Anam-ro Seongbuk-gu Seoul 02841 Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab Department of Mechanical Engineering Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 151-742 Korea
- Institute of Advanced Machines and Design/Institute of Engineering Research Seoul National University Seoul 08826 Korea
| |
Collapse
|
22
|
Chen HW, Lin MF, Lai YH, Chen BY. Skin-friendly dressing with alcohols treatment for enhancement of mechanical and biocompatible properties. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Heinz M, Stephan P, Gambaryan-Roisman T. Influence of nanofiber coating thickness and drop volume on spreading, imbibition, and evaporation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Li C, Qiu Y, Li R, Li M, Qin Z, Yin X. Preparation of poly (N-isopropylacrylamide)/polycaprolactone electrospun nanofibres as thermoresponsive drug delivery systems in wound dressing. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2006654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Changgui Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Yuheng Qiu
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Rongguo Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Ziyu Qin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| |
Collapse
|
25
|
Core/Shell Glycine-Polyvinyl Alcohol/Polycaprolactone Nanofibrous Membrane Intended for Guided Bone Regeneration: Development and Characterization. COATINGS 2021. [DOI: 10.3390/coatings11091130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glycine (Gly), which is the simplest amino acid, induces the inflammation response and enhances bone mass density, and particularly its β polymorph has superior mechanical and piezoelectric properties. Therefore, electrospinning of Gly with any polymer, including polyvinyl alcohol (PVA), has a great potential in biomedical applications, such as guided bone regeneration (GBR) application. However, their application is limited due to a fast degradation rate and undesirable mechanical and physical properties. Therefore, encapsulation of Gly and PVA fiber within a poly(ε-caprolactone) (PCL) shell provides a slower degradation rate and improves the mechanical, chemical, and physical properties. A membrane intended for GBR application is a barrier membrane used to guide alveolar bone regeneration by preventing fast-proliferating cells from growing into the bone defect site. In the present work, a core/shell nanofibrous membrane, composed of PCL as shell and PVA:Gly as core, was developed utilizing the coaxial electrospinning technique and characterized morphologically, mechanically, physically, chemically, and thermally. Moreover, the characterization results of the core/shell membrane were compared to monolithic electrospun PCL, PVA, and PVA:Gly fibrous membranes. The results showed that the core-shell membrane appears to be a good candidate for GBR application with a nano-scale fiber of 412 ± 82 nm and microscale pore size of 6.803 ± 0.035 μm. Moreover, the wettability of 47.4 ± 2.2° contact angle (C.A) and mechanical properties of 135 ± 3.05 MPa average modulus of elasticity, 4.57 ± 0.04 MPa average ultimate tensile stress (UTS), and 39.43% ± 0.58% average elongation at break are desirable and suitable for GBR application. Furthermore, the X-ray diffraction (XRD) and transmission electron microscopy (TEM) results exhibited the formation of β-Gly.
Collapse
|
26
|
Badmus M, Liu J, Wang N, Radacsi N, Zhao Y. Hierarchically electrospun nanofibers and their applications: A review. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2020.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Cescato R, Rigotti D, Mahmood H, Dorigato A, Pegoretti A. Thermal Mending of Electroactive Carbon/Epoxy Laminates Using a Porous Poly(ε-caprolactone) Electrospun Mesh. Polymers (Basel) 2021; 13:polym13162723. [PMID: 34451262 PMCID: PMC8399769 DOI: 10.3390/polym13162723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
For the first time, a porous mesh of poly(ε-caprolactone) (PCL) was electrospun directly onto carbon fiber (CF) plies and used to develop novel structural epoxy (EP) composites with electro-activated self-healing properties. Three samples, i.e., the neat EP/CF composite and two laminates containing a limited amount of PCL (i.e., 5 wt.% and 10 wt.%), were prepared and characterized from a microstructural and thermo-mechanical point of view. The introduction of the PCL mesh led to a reduction in the flexural stress at break (by 17%), of the interlaminar shear strength (by 15%), and of the interlaminar shear strength (by 39%). The interlaminar fracture toughness of the prepared laminates was evaluated under mode I, and broken samples were thermally mended at 80 °C (i.e., above the melting temperature of PCL) by resistive heating generated by a current flow within the samples through Joule’s effect. It was demonstrated that, thanks to the presence of the electrospun PCL mesh, the laminate with a PCL of 10 wt.% showed healing efficiency values up to 31%.
Collapse
Affiliation(s)
- Roberto Cescato
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (R.C.); (H.M.); (A.D.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Florence, Italy
| | - Daniele Rigotti
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (R.C.); (H.M.); (A.D.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Florence, Italy
- Correspondence: (D.R.); (A.P.); Tel.: +39-0461-285393 (D.R.); +39-0461-282452 (A.P.)
| | - Haroon Mahmood
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (R.C.); (H.M.); (A.D.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Florence, Italy
| | - Andrea Dorigato
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (R.C.); (H.M.); (A.D.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Florence, Italy
| | - Alessandro Pegoretti
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (R.C.); (H.M.); (A.D.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Florence, Italy
- Correspondence: (D.R.); (A.P.); Tel.: +39-0461-285393 (D.R.); +39-0461-282452 (A.P.)
| |
Collapse
|
28
|
Wang C, Xu Y, Xia J, Zhou Z, Fang Y, Zhang L, Sun W. Multi-scale hierarchical scaffolds with aligned micro-fibers for promoting cell alignment. Biomed Mater 2021; 16. [PMID: 34116518 DOI: 10.1088/1748-605x/ac0a90] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/11/2021] [Indexed: 01/29/2023]
Abstract
Cell alignment plays an essential role in cytoskeleton reorganization, extracellular matrix remodeling, and biomechanical properties regulation of tissues such as vascular tissues, cardiac muscles, and tendons. Based on the natural-oriented features of cells in native tissues, various biomimetic scaffolds have been reported with the introduction of well-arranged ultrafine fibers to induce cell alignment. However, it is still a challenge to fabricate scaffolds with suitable mechanical properties, biomimetic microenvironment, and ability to promote cell alignment. In this paper, we propose an integrated 3D printing system to fabricate multi-scale hierarchical scaffolds combined with meso-, micro-, and nano-fibrous filaments, in which the meso-, micro-, and nano-fibers fabricated via fused deposition modeling, melt electrospining writing, and solution electrospining can provide structural support, promote cell alignment, and create a biomimetic microenvironment to facilitate cell function, respectively. The plasma surface modification was performed improve the surface wettability of the scaffolds by measuring the contact angle. The obtainedin vitrobiological results validate the ability of multi-scale hierarchical scaffolds to enhance cell adhesion and proliferation, and promote cell alignment with the guidance of the aligned microfibers produced via melt electrospining writing in hierarchical scaffolds.
Collapse
Affiliation(s)
- Chengjin Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China.,'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Yuanyuan Xu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China.,'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Jingjing Xia
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China.,'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Zhenzhen Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China.,'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China.,'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Lei Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China.,'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China.,'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China.,Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104, United States of America
| |
Collapse
|
29
|
Antinori ME, Contardi M, Suarato G, Armirotti A, Bertorelli R, Mancini G, Debellis D, Athanassiou A. Advanced mycelium materials as potential self-growing biomedical scaffolds. Sci Rep 2021; 11:12630. [PMID: 34135362 PMCID: PMC8209158 DOI: 10.1038/s41598-021-91572-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Mycelia, the vegetative part of fungi, are emerging as the avant-garde generation of natural, sustainable, and biodegradable materials for a wide range of applications. They are constituted of a self-growing and interconnected fibrous network of elongated cells, and their chemical and physical properties can be adjusted depending on the conditions of growth and the substrate they are fed upon. So far, only extracts and derivatives from mycelia have been evaluated and tested for biomedical applications. In this study, the entire fibrous structures of mycelia of the edible fungi Pleurotus ostreatus and Ganoderma lucidum are presented as self-growing bio-composites that mimic the extracellular matrix of human body tissues, ideal as tissue engineering bio-scaffolds. To this purpose, the two mycelial strains are inactivated by autoclaving after growth, and their morphology, cell wall chemical composition, and hydrodynamical and mechanical features are studied. Finally, their biocompatibility and direct interaction with primary human dermal fibroblasts are investigated. The findings demonstrate the potentiality of mycelia as all-natural and low-cost bio-scaffolds, alternative to the tissue engineering systems currently in place.
Collapse
Affiliation(s)
- Maria Elena Antinori
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
- DIBRIS, University of Genoa, Genoa, Italy
| | - Marco Contardi
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Giulia Suarato
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Translational Pharmacology, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Giorgio Mancini
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Athanassia Athanassiou
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| |
Collapse
|
30
|
Seyedian R, Isavi F, Najafiasl M, Zaeri S. Electrospun fibers loaded with Cordia myxa L. fruit extract: Fabrication, characterization, biocompatibility and efficacy in wound healing. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Ge Y, Tang J, Ullah A, Ullah S, Sarwar MN, Kim IS. Sabina chinensis leaf extracted and in situ incorporated polycaprolactone/polyvinylpyrrolidone electrospun microfibers for antibacterial application. RSC Adv 2021; 11:18231-18240. [PMID: 35480946 PMCID: PMC9033436 DOI: 10.1039/d1ra01061a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/28/2021] [Indexed: 01/19/2023] Open
Abstract
Sabina chinensis is a valuable reforestation conifer and traditional medicinal plant. In order to retain the physiological and pharmacological activities of the plant and obtain a fibrous material with better antibacterial properties, a mixed solvent of dichloromethane and N,N'-dimethylformamide was used to obtain the leaf extracts, and Sabina chinensis leaf extract (ScLE)-loaded PCL/PVP microfibers were successfully fabricated by electrospinning. The whole preparation process was carried out at room temperature to avoid deterioration of active ingredients. From the antibacterial activity test, it was observed that ScLE-loaded polycaprolactone/polyvinylpyrrolidone (PCL/PVP) microfibers had potential antibacterial activity against both Gram-positive and Gram-negative bacteria stains. The morphological properties of the prepared microfibers were observed by SEM. As the proportion of ScLE increased, the fiber diameter gradually increased and the surface was smooth. The excess ScLE addition caused the formation of beads during electrospinning. Considering different characterization results, 33% (v/v) addition of ScLE to the spinning solution was the optimum ratio. The winding structure obtained by the interaction of components in ScLE with PCL and PVP was confirmed by FTIR, XRD and WCA tests, which indicated that ScLE-loaded microfibers possessed excellent thermal stability, tear resistance and degradation resistance. It is expected that the prepared composite microfibers have potential applications as robust antibacterial meshes and films in the fields of biomedicine and air purification.
Collapse
Affiliation(s)
- Yan Ge
- School of Textile and Clothing, Nantong University Nantong 226019 PR China
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University Nantong 226019 PR China
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering IFES-Interdisciplinary Cluster for Cutting Edge Research ICCER, Shinshu University Tokida 3-15-1 Ueda Nagano 386-8567 Japan
| | - Jiapeng Tang
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University Nantong 226019 PR China
- Co-innovation Center of Neuroregeneration, Nantong University Nantong 226001 PR China
| | - Azeem Ullah
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering IFES-Interdisciplinary Cluster for Cutting Edge Research ICCER, Shinshu University Tokida 3-15-1 Ueda Nagano 386-8567 Japan
| | - Sana Ullah
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering IFES-Interdisciplinary Cluster for Cutting Edge Research ICCER, Shinshu University Tokida 3-15-1 Ueda Nagano 386-8567 Japan
| | - Muhammad Nauman Sarwar
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering IFES-Interdisciplinary Cluster for Cutting Edge Research ICCER, Shinshu University Tokida 3-15-1 Ueda Nagano 386-8567 Japan
| | - Ick-Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering IFES-Interdisciplinary Cluster for Cutting Edge Research ICCER, Shinshu University Tokida 3-15-1 Ueda Nagano 386-8567 Japan
| |
Collapse
|
32
|
Perez-Puyana V, Villanueva P, Jiménez-Rosado M, de la Portilla F, Romero A. Incorporation of Elastin to Improve Polycaprolactone-Based Scaffolds for Skeletal Muscle via Electrospinning. Polymers (Basel) 2021; 13:polym13091501. [PMID: 34066640 PMCID: PMC8124825 DOI: 10.3390/polym13091501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
Skeletal muscle regeneration is increasingly necessary, which is reflected in the increasing number of studies that are focused on improving the scaffolds used for such regeneration, as well as the incubation protocol. The main objective of this work was to improve the characteristics of polycaprolactone (PCL) scaffolds by incorporating elastin to achieve better cell proliferation and biocompatibility. In addition, two cell incubation protocols (with and without dynamic mechanical stimulation) were evaluated to improve the activity and functionality yields of the regenerated cells. The results indicate that the incorporation of elastin generates aligned and more hydrophilic scaffolds with smaller fiber size. In addition, the mechanical properties of the resulting scaffolds make them adequate for use in both bioreactors and patients. All these characteristics increase the biocompatibility of these systems, generating a better interconnection with the tissue. However, due to the low maturation achieved in biological tests, no differences could be found between the incubation with and without dynamic mechanical stimulation.
Collapse
Affiliation(s)
- Victor Perez-Puyana
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; (V.P.-P.); (A.R.)
| | - Paula Villanueva
- Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital, IBiS, CSIC/University of Seville, 41013 Sevilla, Spain; (P.V.); (F.d.l.P.)
| | - Mercedes Jiménez-Rosado
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; (V.P.-P.); (A.R.)
- Correspondence: ; Tel.: +34-954-557-179
| | - Fernando de la Portilla
- Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital, IBiS, CSIC/University of Seville, 41013 Sevilla, Spain; (P.V.); (F.d.l.P.)
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; (V.P.-P.); (A.R.)
| |
Collapse
|
33
|
Bassi APF, Bizelli VF, Francatti TM, Rezende de Moares Ferreira AC, Carvalho Pereira J, Al-Sharani HM, de Almeida Lucas F, Faverani LP. Bone Regeneration Assessment of Polycaprolactone Membrane on Critical-Size Defects in Rat Calvaria. MEMBRANES 2021; 11:membranes11020124. [PMID: 33572318 PMCID: PMC7916152 DOI: 10.3390/membranes11020124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Biomaterials for use in guided bone regeneration (GBR) are constantly being investigated and developed to improve clinical outcomes. The present study aimed to comparatively evaluate the biological performance of different membranes during the bone healing process of 8 mm critical defects in rat calvaria in order to assess their influence on the quality of the newly formed bone. Seventy-two adult male rats were divided into three experimental groups (n = 24) based on the membranes used: the CG—membrane-free control group (only blood clot, negative control), BG—porcine collagen membrane group (Bio-Guide®, positive control), and the PCL—polycaprolactone (enriched with 5% hydroxyapatite) membrane group (experimental group). Histological and histometric analyses were performed at 7, 15, 30, and 60 days postoperatively. The quantitative data were analyzed by two-way ANOVA and Tukey’s test (p < 0.05). At 7 and 15 days, the inflammatory responses in the BG and PCL groups were significantly different (p < 0.05). The PCL group, at 15 days, showed a large area of newly formed bone. At 30 and 60 days postoperatively, the PCL and BG groups exhibited similar bone healing, including some specimens showing complete closure of the critical defect (p = 0.799). Thus, the PCL membrane was biocompatible, and has the potential to help with GBR procedures.
Collapse
Affiliation(s)
- Ana Paula Farnezi Bassi
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University—UNESP, Araçatuba, São Paulo 16015-050, Brazil; (V.F.B.); (T.M.F.); (A.C.R.d.M.F.); (J.C.P.); (L.P.F.)
- Correspondence: ; Tel.: +55-18-36363242
| | - Vinícius Ferreira Bizelli
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University—UNESP, Araçatuba, São Paulo 16015-050, Brazil; (V.F.B.); (T.M.F.); (A.C.R.d.M.F.); (J.C.P.); (L.P.F.)
| | - Tamires Mello Francatti
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University—UNESP, Araçatuba, São Paulo 16015-050, Brazil; (V.F.B.); (T.M.F.); (A.C.R.d.M.F.); (J.C.P.); (L.P.F.)
| | - Ana Carulina Rezende de Moares Ferreira
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University—UNESP, Araçatuba, São Paulo 16015-050, Brazil; (V.F.B.); (T.M.F.); (A.C.R.d.M.F.); (J.C.P.); (L.P.F.)
| | - Járede Carvalho Pereira
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University—UNESP, Araçatuba, São Paulo 16015-050, Brazil; (V.F.B.); (T.M.F.); (A.C.R.d.M.F.); (J.C.P.); (L.P.F.)
| | - Hesham Mohammed Al-Sharani
- School of Dentistry, Faculty of Dentistry, Ibb University, Ibb, Yemen;
- Department of Maxillofacial Surgery, School of Stomatology, Harbin Medical University, Harbin 150081, China
| | - Flavia de Almeida Lucas
- Araçatuba Veterinary Medicine School, UNESP—São Paulo State University, Araçatuba, São Paulo 16050-680, Brazil;
| | - Leonardo Perez Faverani
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University—UNESP, Araçatuba, São Paulo 16015-050, Brazil; (V.F.B.); (T.M.F.); (A.C.R.d.M.F.); (J.C.P.); (L.P.F.)
| |
Collapse
|
34
|
Castillo-Henríquez L, Castro-Alpízar J, Lopretti-Correa M, Vega-Baudrit J. Exploration of Bioengineered Scaffolds Composed of Thermo-Responsive Polymers for Drug Delivery in Wound Healing. Int J Mol Sci 2021; 22:1408. [PMID: 33573351 PMCID: PMC7866792 DOI: 10.3390/ijms22031408] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Innate and adaptive immune responses lead to wound healing by regulating a complex series of events promoting cellular cross-talk. An inflammatory response is presented with its characteristic clinical symptoms: heat, pain, redness, and swelling. Some smart thermo-responsive polymers like chitosan, polyvinylpyrrolidone, alginate, and poly(ε-caprolactone) can be used to create biocompatible and biodegradable scaffolds. These processed thermo-responsive biomaterials possess 3D architectures similar to human structures, providing physical support for cell growth and tissue regeneration. Furthermore, these structures are used as novel drug delivery systems. Locally heated tumors above the polymer lower the critical solution temperature and can induce its conversion into a hydrophobic form by an entropy-driven process, enhancing drug release. When the thermal stimulus is gone, drug release is reduced due to the swelling of the material. As a result, these systems can contribute to the wound healing process in accelerating tissue healing, avoiding large scar tissue, regulating the inflammatory response, and protecting from bacterial infections. This paper integrates the relevant reported contributions of bioengineered scaffolds composed of smart thermo-responsive polymers for drug delivery applications in wound healing. Therefore, we present a comprehensive review that aims to demonstrate these systems' capacity to provide spatially and temporally controlled release strategies for one or more drugs used in wound healing. In this sense, the novel manufacturing techniques of 3D printing and electrospinning are explored for the tuning of their physicochemical properties to adjust therapies according to patient convenience and reduce drug toxicity and side effects.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), 1174-1200 San José, Costa Rica;
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Jose Castro-Alpízar
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Costa Rica, 11501-2060 San José, Costa Rica;
| | - Mary Lopretti-Correa
- Nuclear Research Center, Faculty of Science, Universidad de la República (UdelaR), 11300 Montevideo, Uruguay;
| | - José Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), 1174-1200 San José, Costa Rica;
- Laboratory of Polymers (POLIUNA), Chemistry School, National University of Costa Rica, 86-3000 Heredia, Costa Rica
| |
Collapse
|
35
|
He T, Narumi A, Wang Y, Xu L, Sato SI, Shen X, Kakuchi T. Amphiphilic diblock copolymers of poly(glycidol) with biodegradable polyester/polycarbonate. organocatalytic one-pot ROP and self-assembling property. Polym Chem 2021. [DOI: 10.1039/d1py01026c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poly(glycidol)-based block copolymers with excellent micelle formation properties were prepared via organocatalytic one-pot ROP.
Collapse
Affiliation(s)
- Tingyu He
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| | - Atsushi Narumi
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yanqiu Wang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| | - Liang Xu
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| | - Shin-ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Xiande Shen
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China
| | - Toyoji Kakuchi
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China
| |
Collapse
|
36
|
Ghaffari-Bohlouli P, Zahedi P, Shahrousvand M. Enhanced osteogenesis using poly (l-lactide-co-d, l-lactide)/poly (acrylic acid) nanofibrous scaffolds in presence of dexamethasone-loaded molecularly imprinted polymer nanoparticles. Int J Biol Macromol 2020; 165:2363-2377. [DOI: 10.1016/j.ijbiomac.2020.10.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
|
37
|
Ziaei Amiri F, Pashandi Z, Lotfibakhshaiesh N, Mirzaei-Parsa MJ, Ghanbari H, Faridi-Majidi R. Cell attachment effects of collagen nanoparticles on crosslinked electrospun nanofibers. Int J Artif Organs 2020; 44:199-207. [PMID: 32807005 DOI: 10.1177/0391398820947737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Since collagen is naturally a main extracellular matrix protein, it has been applied widely in skin's tissue engineering scaffolds to mimics the characteristics of extracellular matrix for proper transplantation of living cells. However, there are challenges that come with application of this natural polymer such as high solubility in aqueous environments which requires further consideration such as chemically cross-linking in order to stabilization. But these treatments also affect its functionality and finally cellular behaviors on scaffold. In this research we evaluated the suitability of collagen nanofibers versus collagen nanoparticles for cell adhesion and viability on glutaraldehyde cross-linked scaffolds. Appling a dual-pump electrospining machine a blend PCL-Gelatin from one side and collagen nanofibers or collagen nanoparticles from the other side were collected on the collector. The fabricated scaffolds were characterized by scanning electron microscopy, contact angle, and mechanical analysis. The cell viability, adhesion and morphology were studied respectively using MTT assay, hoechst staining and scanning electron microscopy. The results indicated significantly improvement of cell viability, adhesion and better spreading on scaffolds with collagen nanoparticles than collagen nanofibers. It seems changes in surface morphology, viscoelastic moduli and swelling ability following cross-linking with glutaraldehyde in scaffold with collagen nanoparticles are still favorable for cellular proliferation. Based on these results, in the case of glutaraldehyde cross-linking, application of collagen nanoparticles rather than collagen nanofibers in tissue regeneration scaffolds will better mimic the extracellular matrix characteristics; and preserve the viability and adhesion of seeded cells.
Collapse
Affiliation(s)
- Fereshteh Ziaei Amiri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zaiddodine Pashandi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Javad Mirzaei-Parsa
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
|
39
|
Arbade GK, Srivastava J, Tripathi V, Lenka N, Patro TU. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1648-1670. [PMID: 32402230 DOI: 10.1080/09205063.2020.1769799] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, poly(ε-caprolactone) (PCL) has been blended with a more hydrophilic poly(ethylene glycol) (PEG) and with a biocompatible block-co-polymer: poly(L-lactide-co-ε-caprolactone-co-glycolide) (PLCG) in order to improve hydrophilicity, biocompatibility and biodegradability of PCL. PCL and the blend solutions were subjected to electrospinning to produce nanofiber scaffolds by the addition of only 1 wt% of PEG and PLCG either singly or in combination in PCL to retain the mechanical properties of the scaffolds. PCL-PEG-PLCG ternary and two binary (PCL-PEG and PCL-PLCG) blend nanofiber scaffolds have been prepared for comparison. The resulting nanofibers showed a smooth and flaw-free surface and the diameter of the nanofibers displayed a normal distribution. The PCL-PEG nanofiber scaffold showed improved hydrophilicity [water contact angle (WCA) ∼84°] over pristine PCL (WCA ∼127°); while PCL-PLCG and PCL-PEG-PLCG scaffolds exhibited absolute wetting by water, likely due to high porosity. In vitro biocompatibility studies using gingival mesenchymal stem cells (gMSCs) suggested that, both the PCL and the blend scaffolds were biocompatible supporting cell-viability and growth of gMSCs following their seeding on these scaffolds. Biodegradation studies in phosphate buffer solution showed that the addition of PEG and PLCG in PCL increased the weight loss of scaffolds with time, indicating higher extent of biodegradation in the blend scaffolds and the weight loss followed the power law curve with time.
Collapse
Affiliation(s)
- Gajanan Kashinathrao Arbade
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, India.,National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | - Nibedita Lenka
- National Centre for Cell Science, Pune, Maharashtra, India
| | - T Umasankar Patro
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, India
| |
Collapse
|
40
|
|
41
|
Rashtchian M, Hivechi A, Bahrami SH, Milan PB, Simorgh S. Fabricating alginate/poly(caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Carbohydr Polym 2020; 233:115873. [DOI: 10.1016/j.carbpol.2020.115873] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/31/2023]
|
42
|
Zhao X, Bian F, Sun L, Cai L, Li L, Zhao Y. Microfluidic Generation of Nanomaterials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1901943. [PMID: 31259464 DOI: 10.1002/smll.201901943] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/09/2019] [Indexed: 05/23/2023]
Abstract
As nanomaterials (NMs) possess attractive physicochemical properties that are strongly related to their specific sizes and morphologies, they are becoming one of the most desirable components in the fields of drug delivery, biosensing, bioimaging, and tissue engineering. By choosing an appropriate methodology that allows for accurate control over the reaction conditions, not only can NMs with high quality and rapid production rate be generated, but also designing composite and efficient products for therapy and diagnosis in nanomedicine can be realized. Recent evidence implies that microfluidic technology offers a promising platform for the synthesis of NMs by easy manipulation of fluids in microscale channels. In this Review, a comprehensive set of developments in the field of microfluidics for generating two main classes of NMs, including nanoparticles and nanofibers, and their various potentials in biomedical applications are summarized. Furthermore, the major challenges in this area and opinions on its future developments are proposed.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P. R. China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yuanjin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
43
|
Shitole AA, Raut P, Giram P, Rade P, Khandwekar A, Garnaik B, Sharma N. Poly (vinylpyrrolidone)‑iodine engineered poly (ε-caprolactone) nanofibers as potential wound dressing materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110731. [PMID: 32204042 DOI: 10.1016/j.msec.2020.110731] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/08/2023]
Abstract
Facilitating the process of wound healing and effective treatment of wounds remains a serious challenge in healthcare. Wound dressing materials play a major role in the protection of wounds and in accelerating the natural healing process. In the present study, novel core/shell (c/s) nanofibrous mats of poly(vinyl pyrrolidone)‑iodine (PVPI) and polycaprolactone (PCL) were fabricated using a co-axial electrospinning process followed by their surface modification with poly-l-lysine. The developed nanofibrous mats were extensively characterized for their physicochemical properties using various analytical techniques. The core/shell structure of the PVP-I/PCL nanofibers was confirmed using TEM analysis. The PVP-I release studies showed an initial burst phase followed by a sustained release pattern of PVP-I over a period of 30 days. The developed nanofibers exhibited higher BSA and fibrinogen adsorption as compared to pristine PCL. Cytotoxicity studies using MTT assay demonstrated that the PVP-I/PCL (c/s) nanofibers were cytocompatible at optimized PVP-I concentration (3 wt%). The PCL-poly-l-lysine and PVP-I/PCL-poly-l-lysine nanofibers exhibited higher cell viability (24.2% and 21.4% higher at day 7) when compared to uncoated PCL and PVP-I/PCL nanofibers. The PVP-I/PCL nanofibers showed excellent antimicrobial activity against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. The inflammatory response of Mouse RAW 264.7 macrophage cells towards the nanofibers was studied using RT-PCR. It revealed that the pro-inflammatory cytokines (TNF-α and IL-1β) were significantly upregulated on PCL nanofibers, while their expression was comparatively lower on poly-l-lysine coated PCL or PVP-I/PCL(c/s) nanofibers. Overall, the study highlights the ability of poly-l-lysine coated PVP-I/PCL (c/s) nanofibers as potential wound dressing materials effectively facilitating the early stage wound healing and repair process by virtue of their selective modulation of inflammation, cell adhesion and antimicrobial properties.
Collapse
Affiliation(s)
- Ajinkya A Shitole
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India
| | - Piyush Raut
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India
| | - Prabhanjan Giram
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Rade
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anand Khandwekar
- School of Engineering, Ajeenkya DY Patil University (ADYPU), Charholi Budruk, Pune 412105, Maharashtra, India.
| | - Baijayantimala Garnaik
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Neeti Sharma
- School of Engineering, Ajeenkya DY Patil University (ADYPU), Charholi Budruk, Pune 412105, Maharashtra, India.
| |
Collapse
|
44
|
Tan HL, Kai D, Pasbakhsh P, Teow SY, Lim YY, Pushpamalar J. Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: A potential scaffold for tissue engineering. Colloids Surf B Biointerfaces 2019; 188:110713. [PMID: 31884080 DOI: 10.1016/j.colsurfb.2019.110713] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
Abstract
Electrospinning is a common method to prepare nanofiber scaffolds for tissue engineering. One of the common cellulose esters, cellulose acetate butyrate (CAB), has been electrospun into nanofibers and studied. However, the intrinsic hydrophobicity of CAB limits its application in tissue engineering as it retards cell adhesion. In this study, the properties of CAB nanofibers were improved by fabricating the composite nanofibers made of CAB and hydrophilic polyethylene glycol (PEG). Different ratios of CAB to PEG were tested and only the ratio of 2:1 resulted in smooth and bead-free nanofibers. The tensile test results show that CAB/PEG composite nanofibers have 2-fold higher tensile strength than pure CAB nanofibers. The hydrophobicity of the composite nanofibers was also reduced based on the water contact angle analysis. As the hydrophilicity increases, the swelling ability of the composite nanofiber increases by 2-fold with more rapid biodegradation. The biocompatibility of the nanofibers was tested with normal human dermal fibroblasts (NHDF). The cell viability assay results revealed that the nanofibers are non-toxic. In addition to that, CAB/PEG nanofibers have better cell attachment compared to pure CAB nanofibers. Based on this study, CAB/PEG composite nanofibers could potentially be used as a nanofiber scaffold for applications in tissue engineering.
Collapse
Affiliation(s)
- Hui-Li Tan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Pooria Pasbakhsh
- Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Yau-Yan Lim
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Janarthanan Pushpamalar
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
45
|
Hu Q, Wu C, Zhang H. Preparation and optimization of a gelatin-based biomimetic three-layered vascular scaffold. J Biomater Appl 2019; 34:431-441. [PMID: 31126207 DOI: 10.1177/0885328219851224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qingxi Hu
- 1 Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
- 2 Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- 3 National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Chuang Wu
- 1 Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
| | - Haiguang Zhang
- 1 Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
- 2 Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- 3 National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| |
Collapse
|
46
|
Thaiane da Silva T, Cesar GB, Francisco CP, Mossini GG, Castro Hoshino LV, Sato F, Radovanovic E, Silva Agostini DL, Caetano W, Hernandes L, Matioli G. Electrospun curcumin/polycaprolactone/copolymer F‐108 fibers as a new therapy for wound healing. J Appl Polym Sci 2019. [DOI: 10.1002/app.48415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thamara Thaiane da Silva
- Postgraduate Program in Food Science, State University of Maringá (UEM), 5790 Colombo Avenue Maringá 87020‐900 PR Brazil
| | - Gabriel Batista Cesar
- Department of ChemistryState University of Maringá (UEM), 5790 Colombo Avenue Maringá 87020‐900 PR Brazil
| | - Carolina Pereira Francisco
- Department of Chemical EngineeringState University of Maringá (UEM), 5790 Colombo Avenue Maringá 87020‐900 PR Brazil
| | - Guilherme Galerani Mossini
- Department of MedicineState University of Maringá (UEM), 5790 Colombo Avenue Maringá 87020‐900 PR Brazil
| | | | - Francielle Sato
- Department of PhysicsState University of Maringá (UEM), 5790 Colombo Avenue Maringá 87020‐900 PR Brazil
| | - Eduardo Radovanovic
- Department of ChemistryState University of Maringá (UEM), 5790 Colombo Avenue Maringá 87020‐900 PR Brazil
| | - Deuber Lincon Silva Agostini
- Department of PhysicsState University of São Paulo (UNESP), 305 Roberto Simonsen Street 19060‐900 Presidente Prudente SP Brazil
| | - Wilker Caetano
- Department of ChemistryState University of Maringá (UEM), 5790 Colombo Avenue Maringá 87020‐900 PR Brazil
| | - Luzmarina Hernandes
- Department of PhysicsState University of Maringá (UEM), 5790 Colombo Avenue Maringá 87020‐900 PR Brazil
- Department of Morphological SciencesState University of Maringá (UEM), 5790 Colombo Avenue Maringá 87020‐900 PR Brazil
| | - Graciette Matioli
- Postgraduate Program in Food Science, State University of Maringá (UEM), 5790 Colombo Avenue Maringá 87020‐900 PR Brazil
- Department of PharmacyState University of Maringá (UEM), 5790 Colombo Avenue Maringá 87020‐900 PR Brazil
| |
Collapse
|
47
|
Houshyar S, Kumar GS, Rifai A, Tran N, Nayak R, Shanks RA, Padhye R, Fox K, Bhattacharyya A. Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:378-387. [DOI: 10.1016/j.msec.2019.02.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
|
48
|
Chen L, Wang S, Yu Q, Topham PD, Chen C, Wang L. A comprehensive review of electrospinning block copolymers. SOFT MATTER 2019; 15:2490-2510. [PMID: 30860535 DOI: 10.1039/c8sm02484g] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrospinning provides a versatile and cost-effective route for the generation of continuous nanofibres with high surface area-to-volume ratio from various polymers. In parallel, block copolymers (BCPs) are promising candidates for many diverse applications, where nanoscale operation is exploited, owing to their intrinsic self-assembling behaviour at these length scales. Judicious combination of BCPs (with their ability to make nanosized domains at equilibrium) and electrospinning (with its ability to create nano- and microsized fibres and particles) allows one to create BCPs with high surface area-to-volume ratio to deliver higher efficiency or efficacy in their given application. Here, we give a comprehensive overview of the wide range of reports on BCP electrospinning with focus placed on the use of molecular design alongside control over specific electrospinning type and post-treatment methodologies to control the properties of the resultant fibrous materials. Particular attention is paid to the applications of these materials, most notably, their use as biomaterials, separation membranes, sensors, and electronic materials.
Collapse
Affiliation(s)
- Lei Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | | | |
Collapse
|
49
|
Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Matson T, Gootee J, Snider C, Brockman J, Grant D, Grant SA. Electrospun PCL, gold nanoparticles, and soy lecithin composite material for tissue engineering applications. J Biomater Appl 2019; 33:979-988. [PMID: 30522383 DOI: 10.1177/0885328218815807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Soy lecithin has been shown to play a critical role in cell signaling and cellular membrane structure. In addition, it has been shown to increase biocompatibility, hydrophilicity, and decrease cytotoxicity. Gold nanoparticles have also shown to improve cellularity. Lecithin, gold nanoparticles, and polycaprolactone (PCL) solutions were electrospun in order to develop unique mesh materials for the treatment of osteoarthritis. The electrospinning parameters were optimized to achieve different solution ratios for fiber optimization. The amount of lecithin mixed with PCL varied from 30 wt.% to 50 wt.% . Gold nanoparticles (1% to 10% concentrations) were also added to lecithin-PCL mixture. The mechanical and chemical properties of the fiber mesh were analyzed via contact angle test, tensile mechanical tests, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Cell viability was measured using a WST-1 Assay. Scanning electron microscopy confirmed the successful formation of fiber mesh. The compositions of 40% soy lecithin with PCL in 40% solvent (40:40) resulted in the most well-formed fiber mesh. DSC melt temperatures were statically insignificant; uniaxial stresses and the moduli resulted in no significant difference between the test composition and pristine PCL compositions. WST-1 assay revealed all compositions were non-cytotoxic. Overall, the addition of lecithin increased hydrophilicity while maintaining cell viability and the mechanical and chemical properties of PCL. This study demonstrated that it is possible to successfully electrospin a lecithin, gold nanoparticle, and polycaprolactone scaffold for tissue engineering applications.
Collapse
Affiliation(s)
- Toni Matson
- Department of Bioengineering, University of Missouri, Columbia, MO, USA
| | - Jonathan Gootee
- Department of Bioengineering, University of Missouri, Columbia, MO, USA
| | - Colten Snider
- Department of Bioengineering, University of Missouri, Columbia, MO, USA
| | - John Brockman
- Department of Bioengineering, University of Missouri, Columbia, MO, USA
| | - David Grant
- Department of Bioengineering, University of Missouri, Columbia, MO, USA
| | - Sheila A Grant
- Department of Bioengineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|