1
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
2
|
Fingernagel J, Boye S, Kietz A, Höbel S, Wozniak K, Moreno S, Janke A, Lederer A, Aigner A, Temme A, Voit B, Appelhans D. Mono- and Polyassociation Processes of Pentavalent Biotinylated PEI Glycopolymers for the Fabrication of Biohybrid Structures with Targeting Properties. Biomacromolecules 2019; 20:3408-3424. [DOI: 10.1021/acs.biomac.9b00667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes Fingernagel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - André Kietz
- Clinical Pharmacology, Faculty of Medicine, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Sabrina Höbel
- Clinical Pharmacology, Faculty of Medicine, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Katarzyna Wozniak
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Achim Aigner
- Clinical Pharmacology, Faculty of Medicine, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Achim Temme
- Experimental Neurosurgery/Tumor Immunology, TU Dresden, D-01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner site Dresden, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| |
Collapse
|
3
|
Schulze F, Keperscha B, Appelhans D, Rösen-Wolff A. Immunomodulatory Effects of Dendritic Poly(ethyleneimine) Glycoarchitectures on Human Multiple Myeloma Cell Lines, Mesenchymal Stromal Cells, and in Vitro Differentiated Macrophages for an Ideal Drug Delivery System in the Local Treatment of Multiple Myeloma. Biomacromolecules 2019; 20:2713-2725. [DOI: 10.1021/acs.biomac.9b00475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Felix Schulze
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Bettina Keperscha
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
4
|
Acebo C, Ramis X, Serra A. Improved epoxy thermosets by the use of poly(ethyleneimine) derivatives. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2016-0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Epoxy resins are commonly used as thermosetting materials due to their excellent mechanical properties, high adhesion to many substrates and good heat and chemical resistances. This type of thermosets is intensively used in a wide range of fields, where they act as fiber-reinforced materials, general-purpose adhesives, high-performance coatings and encapsulating materials. These materials are formed by the chemical reaction of multifunctional epoxy monomers forming a polymer network produced through an irreversible way. In this article the improvement of the characteristics of epoxy thermosets using different hyperbranched poly(ethyleneimine) (PEI) derivatives will be explained.
Collapse
|