1
|
Li L, Xiang F, Wang F, Liu Y. Preparation and antitumor study of intelligent injectable hydrogel: Carboxymethyl chitosan-aldehyde gum Arabic composite graphene oxide hydrogel. Int J Biol Macromol 2024; 259:129429. [PMID: 38232874 DOI: 10.1016/j.ijbiomac.2024.129429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
In this study, we used polyaldehyde gum Arabic (OGA) and carboxymethyl chitosan (CMCS) as a gel matrix to form an injectable self-healing hydrogel by Schiff-base bonding. Further, graphene oxide (GO) was loaded with doxorubicin (DOX) to the hydrogel, which resulted in a CMCS-OGA/GO@DOX hydrogel. We achieved a DOX drug loading capacity of 43.80 ± 1.13 %. Rheological studies showed that GO hydrogels have improved mechanical properties. The in vitro release profile showed pH responsiveness with 88.21 % DOX release at pH 5.5. Biocompatibility studies showed that the hydrogel composition had good cytocompatibility with L929 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed a cell survival rate of 93.88 % within 48 h. The DOX-loaded hydrogel exhibited higher cell mortality in breast cancer cells (4 T1), with an inhibition rate of 79.4 % at 48 h. Acridine orange/ethidium bromide staining experiments on 4 T1 cells showed that when loaded with the same DOX concentration, the hydrogel significantly reduced the toxic effects on normal cells, whereas it had significant cytotoxic effects on cancer cells. This result indicates that the prepared GO hydrogel drug delivery system can serve as a novel approach for localized breast cancer treatment.
Collapse
Affiliation(s)
- Li Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Fengting Xiang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Fan Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; LiaoNing University Judicial Authentication Center, Shenyang 110036, China.
| |
Collapse
|
2
|
Sultan M, Mohamed OA, El-Masry HM, Taha G. Fabrication and evaluation of antimicrobial cellulose/Arabic gum hydrogels as potential drug delivery vehicle. Int J Biol Macromol 2023:125083. [PMID: 37247718 DOI: 10.1016/j.ijbiomac.2023.125083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
This article aims to assess the highly potent antimicrobial hydrogels composed of cellulose and Arabic gum containing sulfadiazine drug (sulfadiazine-loaded Cel/AG) as drug-targeting carriers. ATR-IR, SEM/ EDS, XRD, and XPS methods were used to investigate the hydrogel. The highest water absorption % was 489.93 ± 4.5 at pH 7.4. Pseudo-second order and Fickian diffusion govern the swelling behavior. The maximal sulfadiazine loading percent was 82.291 ± 74. The in-vitro drug release exhibited significant responses in physiologically simulated pH values. The maximum cumulative release percent was 66.42 ± 0.6 % at pH 7.4. The drug release is predicted by the first order and Korsmeyer-Peppas models. The first diffusion coefficient was (Di = 9.207 ± 47 × 10-3 cm2/h) and the late one was (DL = 5.64 ± 9.0 × 10-2 cm2/h) at pH 7.4. That hydrogel is well-thought-out a potential drug delivery vehicle. The thermal stability of the Cel/AG hydrogel drug carrier has been enhanced by the incorporation of sulfadiazine which is evidenced by increasing the total activation approximately two-fold. The total activation energy of Cel/AG and sulfadiazine-loaded Cel/AG hydrogels were -0.07362 and -0.2092 J/mol. The sulfadiazine medication's inhibitory effect was markedly enhanced when it was incorporated into the Cel/AG hydrogel films.
Collapse
Affiliation(s)
- Maha Sultan
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Ola A Mohamed
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Hossam Mohammed El-Masry
- Chemistry of Natural and Microbial Products, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Ghada Taha
- Pre-treatment and Finishing of Cellulose-based Textiles, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt.
| |
Collapse
|
3
|
Mukherjee K, Dutta P, Giri TK. Al 3+/Ca 2+ cross-linked hydrogel matrix tablet of etherified tara gum for sustained delivery of tramadol hydrochloride in gastrointestinal milieu. Int J Biol Macromol 2023; 232:123448. [PMID: 36709815 DOI: 10.1016/j.ijbiomac.2023.123448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Tara gum (TG) was derivatized to carboxymethyl TG (CMTG) and then cross-linked with Al3+/Ca2+ ions to prepare Al/Ca cross-linked CMTG matrices for sustained delivery of Tramadol Hydrochloride (TH), a highly water-soluble drug. The effect of Al3+/Ca2+ ions concentration on swelling, erosion, and drug release behavior from Al/Ca-CMTG matrices was investigated. Al-CMTG matrices had greater cross-linking density, produced a more rigid and denser hydrogel layer than Ca-CMTG matrices. The rate of swelling, erosion, and in vitro drug release from Al-CMTG matrices was slower than from Ca-CMTG matrices. The most important finding of our study indicated that at the same concentration of cross-linking ions, the release of TH from Al-CMTG matrices was slower compared to Ca-CMTG matrices. The optimized formulation containing 9 % w/w AlCl3 in CMTG matrices released TH in a sustained manner up to 12 h in the gastrointestinal milieu. Moreover, it was observed that the prepared optimized formulation exhibited a more sustained release of TH compared to the marketed product.
Collapse
Affiliation(s)
- Kaushik Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Pallobi Dutta
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
4
|
Kamaliya B, Dave PN, Macwan PM. Oxidized multiwalled carbon nanotube reinforced rheological examination on Gum ghatti‐
cl‐poly
(acrylic acid) hydrogels. J Appl Polym Sci 2022. [DOI: 10.1002/app.52888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bhagvan Kamaliya
- Department of Chemistry Sardar Patel University Vallabh Vidyangar India
| | - Pragnesh N. Dave
- Department of Chemistry Sardar Patel University Vallabh Vidyangar India
| | - Pradip M. Macwan
- B. N. Patel Institute of Paramedical & Science (Science Division), Sardar Patel Education Trust Anand India
| |
Collapse
|
5
|
Preparation of strongly photoluminescent nanocomposite from DGEBA epoxy resin and highly fluorescent nitrogen-doped carbon dots. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Saleem A, Akhtar N, Minhas MU, Mahmood A, Khan KU, Abdullah O. Highly Responsive Chitosan-Co-Poly (MAA) Nanomatrices through Cross-Linking Polymerization for Solubility Improvement. Gels 2022; 8:gels8030196. [PMID: 35323309 PMCID: PMC8950559 DOI: 10.3390/gels8030196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 01/09/2023] Open
Abstract
In this study, we report the highly responsive chitosan-based chemically cross-linked nanomatrices, a nano-version of hydrogels developed through modified polymerization reaction for solubility improvement of poorly soluble drug simvastatin. The developed nanomatrices were characterized for solubilization efficiency, swelling studies, sol-gel analysis, in vitro drug release studies, DSC, FTIR, XRD, SEM, particle size analysis, and stability studies. An in vivo acute toxicity study was conducted on female Winstor rats, the result of which endorsed the safety and biocompatibility of the system. A porous and fluffy structure was observed under SEM analysis, which supports the great swelling tendency of the system that further governs the in vitro drug release. Zeta sizer analyzed the particle size in the range of 227.8 ± 17.8 nm. Nano sizing and grafting of hydrophilic excipients to the nanomatrices system explains this shift of trend towards the enhancement of solubilization efficiency, and, furthermore, the XRD results confirmed the amorphous nature of the system. FTIR and DSC analysis confirmed the successful grafting and stability to the system. The developed nanomatrices enhanced the release characteristics and solubility of simvastatin significantly and could be an effective technique for solubility and bioavailability enhancement of other BCS class-II drugs. Due to enhanced solubility, efficient method of preparation, excellent physico-chemical features, and rapid and high dissolution and bio-compatibility, the developed nanomatrices may be a promising approach for oral delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Anam Saleem
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.S.); (N.A.)
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.S.); (N.A.)
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: or ; Tel.: +92-331-9750053
| | - Arshad Mahmood
- College of Pharmacy, Abu Dhabi Campus, Al Ain University, Abu Dhabi 51133, United Arab Emirates;
| | | | - Orva Abdullah
- Hamdard Institute of Pharmaceutical Science, Hamdard University Islamabad, Islamabad 45600, Pakistan;
| |
Collapse
|
7
|
Verma D, Sharma SK. Recent advances in guar gum based drug delivery systems and their administrative routes. Int J Biol Macromol 2021; 181:653-671. [PMID: 33766594 DOI: 10.1016/j.ijbiomac.2021.03.087] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023]
Abstract
Guar gum-based drug carrier systems have gained attention for the delivery of various therapeutic agents via different administration routes for attaining controlled and sustained release. Guar gum offers a safe and effective system for drug delivery due to its natural occurrence, easy availability, biocompatibility, and biodegradability, besides simple and mild preparation techniques. Furthermore, the possibility of using various routes such as oral, buccal, transdermal, intravenous, and gene delivery further diversify guar gum applications in the biomedical field. This review delineates the recent investigation on guar gum-based drug carrier systems like hydrogels, nanoparticles, nanocomposites, and scaffolds along with their related delivery routes. Also, the inclusion of data of the loading and subsequent release of the drugs enables to explore the noble and improved drug targeting therapies.
Collapse
Affiliation(s)
- Diksha Verma
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
8
|
Liu Z, Zhu X, Tang R. Electrospun Scaffold with Sustained Antibacterial and Tissue-Matched Mechanical Properties for Potential Application as Functional Mesh. Int J Nanomedicine 2020; 15:4991-5004. [PMID: 32764931 PMCID: PMC7368590 DOI: 10.2147/ijn.s248970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Various materials and approaches have been used to reduce the mesh-induced inflammatory response and modify the mesh with tissue-matched mechanical properties, aiming to improve the repair of abdominal wall defects. Materials and Methods In this study, we fabricated a polycaprolactone (PCL)/silk fibroin (SF) mesh integrated with amoxicillin (AMX)-incorporating multiwalled carbon nanotubes (MWCNTs) via electrospinning, grafting and crosslinking, developing a sustainable antibiotic and flexible mesh. AMX was loaded into the hollow tubular MWCNTs by physical adsorption, and a nanofibrous structure was constructed by electrospinning PCL and SF (40:60 w/w). The AMX@MWCNTs were then chemically grafted onto the surfaces of the PCL/SF nanofibers by treating with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) solution for simultaneous crosslinking and coating. The incorporation of AMX into the MWCNTs (AMX@MWCNTs) and the integration of the AMX@MWCNTs with the PCL/SF nanofibers were characterized. Then, the functional mesh was fabricated and fully evaluated in terms of antibacterial activity, mechanical properties and host response. Results Our results demonstrated that the PCL/SF nanofibrous structure was fabricated successfully by electrospinning. After integrating with AMX@MWCNT by grafting and crosslinking, the functional mesh showed undeformed structure, modified surface hydrophilicity and biocompatible interfaces, abdominal wall-matched mechanical properties, and a sustained-release antibiotic profile in E. coli growth inhibition compared to those of PCL/SF mesh in vitro. In a rat model with subcutaneous implantation, the functional mesh incited less mesh-induced inflammatory and foreign body responses than PCL/SF mesh within 14 days. The histological analysis revealed less infiltration of granulocytes and macrophages during this period, resulting in the loosely packed collagen deposition on the functional mesh and prominent collagen incorporation. Discussion Therefore, this designed PCL/SF-AMX@MWCNT nanofibrous mesh, functionalized with antibacterial and tissue-matched mechanical properties, provides a promising alternative for the repair of abdominal wall defects.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Xiaoqiang Zhu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Preparation of nanogels based on kappa-carrageenan/chitosan and N-doped carbon dots: study of drug delivery behavior. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03236-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Mohammadinejad R, Kumar A, Ranjbar-Mohammadi M, Ashrafizadeh M, Han SS, Khang G, Roveimiab Z. Recent Advances in Natural Gum-Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review. Polymers (Basel) 2020; 12:E176. [PMID: 31936590 PMCID: PMC7022386 DOI: 10.3390/polym12010176] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
The engineering of tissues under a three-dimensional (3D) microenvironment is a great challenge and needs a suitable supporting biomaterial-based scaffold that may facilitate cell attachment, spreading, proliferation, migration, and differentiation for proper tissue regeneration or organ reconstruction. Polysaccharides as natural polymers promise great potential in the preparation of a three-dimensional artificial extracellular matrix (ECM) (i.e., hydrogel) via various processing methods and conditions. Natural polymers, especially gums, based upon hydrogel systems, provide similarities largely with the native ECM and excellent biological response. Here, we review the origin and physico-chemical characteristics of potentially used natural gums. In addition, various forms of scaffolds (e.g., nanofibrous, 3D printed-constructs) based on gums and their efficacy in 3D cell culture and various tissue regenerations such as bone, osteoarthritis and cartilage, skin/wound, retinal, neural, and other tissues are discussed. Finally, the advantages and limitations of natural gums are precisely described for future perspectives in tissue engineering and regenerative medicine in the concluding remarks.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| | - Gilson Khang
- Department of Polymer Nano Science and Technology, Department of BIN Fusion Technology and BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Dukjin, Jeonju 54896, Korea;
| | - Ziba Roveimiab
- Department of Biological Sciences, and Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
11
|
Nazarzadeh Zare E, Makvandi P, Borzacchiello A, Tay FR, Ashtari B, V T Padil V. Antimicrobial gum bio-based nanocomposites and their industrial and biomedical applications. Chem Commun (Camb) 2019; 55:14871-14885. [PMID: 31776528 DOI: 10.1039/c9cc08207g] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gum polysaccharides are derived from renewable sources. They are readily available, inexpensive, non-hazardous and eco-friendly. Depending upon the source, gums may be categorized as microbial gums, plant exudate gums or seed gums. Naturally occurring gum carbohydrates find multiple applications in the biomedical arena, compared with synthetic compounds, because of their unique structures and functionalities. Gums and their biocomposites are preferred for sustained drug delivery because they are safe and edible as well as more susceptible to biodegradation. The present review provides a state-of-the-art conspectus on the industrial and biomedical applications of antimicrobial gum-based biocomposites. Different kinds of gums polysaccharides will first be addressed based on their sources. Metal-, carbon- and organic-based nanostructures that are used in gum nanocomposites will then be reviewed with respect to their industrial and biomedical applications, to provide a backdrop for future research.
Collapse
Affiliation(s)
| | - Pooyan Makvandi
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR), Naples 80125, Italy. and Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Assunta Borzacchiello
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR), Naples 80125, Italy.
| | - Franklin R Tay
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China and College of Graduate Studies, Augusta University, Augusta, GA 30912, USA
| | - Behnaz Ashtari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran and Shadad Ronak Commercialization Company, Pasdaran Street, Tehran, 1947, Iran
| | - Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| |
Collapse
|
12
|
Chin SF, Romainor ANB, Pang SC, Lee BK, Hwang SS. pH‐Responsive Starch‐Citrate Nanoparticles for Controlled Release of Paracetamol. STARCH-STARKE 2019. [DOI: 10.1002/star.201800336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Suk Fun Chin
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak94300 Kota Samarahan, SarawakMalaysia
| | - Ain N. B. Romainor
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak94300 Kota Samarahan, SarawakMalaysia
| | - Suh Cem Pang
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak94300 Kota Samarahan, SarawakMalaysia
| | - Boon Kiat Lee
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus93350 KuchingMalaysia
| | - Siaw San Hwang
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus93350 KuchingMalaysia
| |
Collapse
|
13
|
Orduño Rodríguez AM, Pérez Martínez CJ, del Castillo Castro T, Castillo Ortega MM, Rodríguez Félix DE, Romero García J. Nanocomposite hydrogel of poly(vinyl alcohol) and biocatalytically synthesized polypyrrole as potential system for controlled release of metoprolol. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02788-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Inamuddin. Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye. Int J Biol Macromol 2019; 121:1046-1053. [DOI: 10.1016/j.ijbiomac.2018.10.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
|
15
|
Rahmani Z, Sahraei R, Ghaemy M. Preparation of spherical porous hydrogel beads based on ion-crosslinked gum tragacanth and graphene oxide: Study of drug delivery behavior. Carbohydr Polym 2018; 194:34-42. [DOI: 10.1016/j.carbpol.2018.04.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/10/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
|
16
|
Understanding the effect of functionalized carbon nanotubes on the properties of tamarind gum hydrogels. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2300-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Mallakpour S, Abdolmaleki A, Tabesh F. Ultrasonic-assisted manufacturing of new hydrogel nanocomposite biosorbent containing calcium carbonate nanoparticles and tragacanth gum for removal of heavy metal. ULTRASONICS SONOCHEMISTRY 2018; 41:572-581. [PMID: 29137788 DOI: 10.1016/j.ultsonch.2017.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
This article reports the first incorporation of calcium carbonate nanoparticles (CC NPs) into tragacanth gum (TG) to prepare a new hydrogel nanocomposite (HNC) system using a green, safe, and eco-friendly method, ultrasound irradiation as an efficient biosorbent of heavy metal ions from wastewater. Morphological studies revealed that the surface of obtained HNCs is rough, homogeneous, and porous-like due to the embedding of CC NPs as well as sonication in comparison to the neat TG which has a smooth surface. The particle size reduction was observed for CC NPs in the matrix (from 57 to 10 nm), which is owing to the extraordinary effect of sonication on this process. Thermal stability of HNCs has been increased after using CC NPs from 8.5 wt% for TG to about 22 wt% for HNCs. The optical band gap of TG/CC HNC 5 wt% calculated to be 4.46 eV which is less than that of CC NPs (5.58 eV) and even TG (6.28 eV) and this result indicated that TG/CC HNC 5 wt% is relatively more conductive than CC NPs and TG. The nitrogen adsorption-desorption disclosed an isotherm type III of Brunauer classification for TG/CC HNC 5 wt% and the surface area has been increased from 0.7 m2.g-1 for TG to 2.3 m2.g-1 for TG/CC HNC 5 wt%. Also, the BET surface area for TG/CC HNC 5 wt% calculated to be 7.8 nm which is classified into mesoporous materials. The Pb2+ ions were significantly removed from water using TG/CC HNC 5 wt% and the removal efficiency was determined as 83% at optimized conditions (pH = 5, adsorbent dosage = 0.015 g, time = 3 h, and Pb2+ concentration = 70 mg.L-1).
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; College of Pardis, Chemistry Section, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Amir Abdolmaleki
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; College of Pardis, Chemistry Section, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Farbod Tabesh
- College of Pardis, Chemistry Section, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
18
|
Iron microencapsulation in gum tragacanth using solvent evaporation method. Int J Biol Macromol 2017; 103:640-647. [DOI: 10.1016/j.ijbiomac.2017.05.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/16/2017] [Accepted: 05/11/2017] [Indexed: 11/17/2022]
|
19
|
Hemmati K, Sahraei R, Ghaemy M. Synthesis and characterization of a novel magnetic molecularly imprinted polymer with incorporated graphene oxide for drug delivery. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|