1
|
Sohn EJ, Jun BM, Nam SN, Park CM, Jang M, Son A, Yoon Y. Photocatalytic boron nitride-based nanomaterials for the removal of selected organic and inorganic contaminants in aqueous solution: A review. CHEMOSPHERE 2024; 349:140800. [PMID: 38040264 DOI: 10.1016/j.chemosphere.2023.140800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Boron nitride (BN) coupled with various conventional and advanced photocatalysts has been demonstrated to exhibit extraordinary activity for photocatalytic degradation because of its unique properties, including a high surface area, constant wide-bandgap semiconducting property, high thermal-oxidation resistance, good hydrogen-adsorption performance, and high chemical/mechanical stability. However, only limited reviews have discussed the application of BN or BN-based nanomaterials as innovative photocatalysts, and it does not cover the recent results and the developments on the application of BN-based nanomaterials for water purification. Herein, we present a complete review of the present findings on the photocatalytic degradation of different contaminants by various BN-based nanomaterials. This review includes the following: (i) the degradation behavior of different BN-based photocatalysts for various contaminants, such as selected dye compounds, pharmaceuticals, personal care products, pesticides, and inorganics; (ii) the stability/reusability of BN-based photocatalysts; and (iii) brief discussion for research areas/future studies on BN-based photocatalysts.
Collapse
Affiliation(s)
- Erica Jungmin Sohn
- Water Supply and Sewerage Department, DOHWA Engineering Co., LTD, 438, Samseong-ro, Gangnam-gu, Seoul, 06178, Republic of Korea
| | - Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon, 34057, Republic of Korea
| | - Seong-Nam Nam
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-dong Nowon-gu, Seoul, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea; Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| |
Collapse
|
2
|
Abstract
![]()
Photocatalytic water splitting can produce hydrogen in
an environmentally
friendly way and provide alternative energy sources to reduce global
carbon emissions. Recently, monolayer fullerene networks have been
successfully synthesized [Hou et al. Nature2022, 606, 507], offering new material candidates
for photocatalysis because of their large surface area with abundant
active sites, feasibility to be combined with other 2D materials to
form heterojunctions, and the C60 cages for potential hydrogen
storage. However, efficient photocatalysts need a combination of a
suitable band gap and appropriate positions of the band edges with
sufficient driving force for water splitting. In this study, I employ
semilocal density functional theory and hybrid functional calculations
to investigate the electronic structures of monolayer fullerene networks.
I find that only the weakly screened hybrid functional, combined with
time-dependent Hartree–Fock calculations to include the exciton
binding energy, can reproduce the experimentally obtained optical
band gap of monolayer C60. All the phases of monolayer
fullerene networks have suitable band gaps with high carrier mobility
and appropriate band edges to thermodynamically drive overall water
splitting. In addition, the optical properties of monolayer C60 are studied, and different phases of fullerene networks
exhibit distinct absorption and recombination behavior, providing
unique advantages either as an electron acceptor or as an electron
donor in photocatalysis.
Collapse
Affiliation(s)
- Bo Peng
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, CambridgeCB3 0HE, United Kingdom
| |
Collapse
|
3
|
Guo Y, Yan C, Guo Y, Ji X. UV-light promoted formation of boron nitride-fullerene composite and its photodegradation performance for antibiotics under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124628. [PMID: 33234396 DOI: 10.1016/j.jhazmat.2020.124628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
A series of C60/BN composites have been synthesized, which can efficiently photodegrade TC under visible-light irradiation. Compared with C60/BN-D6 and C60/BN-V6 synthesized under dark and visible-light irradiation, C60/BN-U6 synthesized under UV-light irradiation has the largest adsorption and photodegradation performance for TC under visible-light irradiation. FTIR and XPS characterizations suggest that C60/BN composite is most likely the charge transfer composite, in which C60 acts as electron acceptor and BN acts as electron donor. UV-light has the best promotion effect for the formation of C60/BN. The adsorption quantity of TC by C60/BN-U6 is 2.77 times higher than that of BN (131.05 mg g-1 vs. 47.27 mg g-1), being due to that C60/BN-U6 has higher surface area than BN (135.7 m2 g-1 vs. 18.8 m2 g-1). The photodegradation of C60/BN-U6 for TC follows Z-scheme heterojunction mechanism, as well as the photo-induced ·O2- and h+ are the dominant photoactive species. Quantitative structure-activity relationship (QSAR) method is applied to evaluate the toxicity of TC and its photodegradation intermediates. The photodegradation rate of C60/BN-U6 for TC is 19.19 times, 10.06 times, 5.83 times, 2.73 times and 1.84 times higher than that of TiO2 (P25), g-C3N4, BNPA, BCNPA, and BN/TiO2, respectively, implying that C60/BN-U is a good metal-free photocatalyst.
Collapse
Affiliation(s)
- Yong Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Congcong Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ying Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xin Ji
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
4
|
Affiliation(s)
- Olivia Z. Durham
- Department of Chemistry and Biomolecular Science, and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York, USA
| | - Devon A. Shipp
- Department of Chemistry and Biomolecular Science, and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York, USA
| |
Collapse
|
5
|
Petrizza L, Le Bechec M, Decompte E, El Hadri H, Lacombe S, Save M. Tuning photosensitized singlet oxygen production from microgels synthesized by polymerization in aqueous dispersed media. Polym Chem 2019. [DOI: 10.1039/c9py00157c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Miniemulsion copolymerization of vinyl acetate, N-vinylcaprolactam, vinyl benzyl Rose Bengal and divinyl adipate to synthesize switchable photosensitizer-grafted polymer colloids for interfacial photooxygenation reactions.
Collapse
Affiliation(s)
- Luca Petrizza
- CNRS/Univ. Pau & Pays Adour/E2S UPPA
- IPREM
- Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux
- PAU cedex 9
- France
| | - Mickael Le Bechec
- CNRS/Univ. Pau & Pays Adour/E2S UPPA
- IPREM
- Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux
- PAU cedex 9
- France
| | - Emile Decompte
- CNRS/Univ. Pau & Pays Adour/E2S UPPA
- IPREM
- Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux
- PAU cedex 9
- France
| | - Hind El Hadri
- CNRS/Univ. Pau & Pays Adour/E2S UPPA
- IPREM
- Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux
- PAU cedex 9
- France
| | - Sylvie Lacombe
- CNRS/Univ. Pau & Pays Adour/E2S UPPA
- IPREM
- Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux
- PAU cedex 9
- France
| | - Maud Save
- CNRS/Univ. Pau & Pays Adour/E2S UPPA
- IPREM
- Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux
- PAU cedex 9
- France
| |
Collapse
|
7
|
Tan J, Li C, De Bruycker K, Zhang G, Gu J, Zhang Q. Recyclable cross-linked hydroxythioether particles with tunable structures via robust and efficient thiol-epoxy dispersion polymerizations. RSC Adv 2017. [DOI: 10.1039/c7ra10481b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thiol-epoxy reactions were first exploited as a simple method for the preparation of recyclable cross-linked hydroxythioether particles with tunable structures.
Collapse
Affiliation(s)
- Jiaojun Tan
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Chunmei Li
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Kevin De Bruycker
- Department of Organic and Macromolecular Chemistry
- Polymer Chemistry Research Group
- Ghent University
- B-9000 Ghent
- Belgium
| | - Guoxian Zhang
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Junwei Gu
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Qiuyu Zhang
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| |
Collapse
|
8
|
Jiang K, Liu Y, Yan Y, Wang S, Liu L, Yang W. Combined chain- and step-growth dispersion polymerization toward PSt particles with soft, clickable patches. Polym Chem 2017. [DOI: 10.1039/c6py02094a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Particles with a hard body and soft, clickable dimple- or bulge-patches are prepared by simple combined chain- and step-growth dispersion polymerization.
Collapse
Affiliation(s)
- Kun Jiang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yanan Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yaping Yan
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shengliu Wang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lianying Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wantai Yang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|