1
|
Lu D, Bobrin VA. Scalable Macroscopic Engineering from Polymer-Based Nanoscale Building Blocks: Existing Challenges and Emerging Opportunities. Biomacromolecules 2024; 25:7058-7077. [PMID: 39470717 DOI: 10.1021/acs.biomac.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Natural materials exhibit exceptional properties due to their hierarchical structures spanning from the nano- to the macroscale. Replicating these intricate spatial arrangements in synthetic materials presents a significant challenge as it requires precise control of nanometric features within large-scale structures. Addressing this challenge depends on developing methods that integrate assembly techniques across multiple length scales to construct multiscale-structured synthetic materials in practical, bulk forms. Polymers and polymer-hybrid nanoparticles, with their tunable composition and structural versatility, are promising candidates for creating hierarchically organized materials. This review highlights advances in scalable techniques for nanoscale organization of polymer-based building blocks within macroscopic structures, including block copolymer self-assembly with additive manufacturing, polymer brush nanoparticles capable of self-assembling into larger, ordered structures, and direct-write colloidal assembly. These techniques offer promising pathways toward the scalable fabrication of materials with emergent properties suited for advanced applications such as bioelectronic interfaces, artificial muscles, and other biomaterials.
Collapse
Affiliation(s)
- Derong Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Zhong Z, Du G, Ma L, Wang Y, Jiang J. Self-Assembly of Lamellae-in-Lamellae by Double-Tail Cationic Surfactants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401210. [PMID: 38751126 PMCID: PMC11267300 DOI: 10.1002/advs.202401210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Indexed: 07/25/2024]
Abstract
The molecular structures of surfactants play a pivotal role in influencing their self-assembly behaviors. In this work, using simulations and experiments, an unconventional hierarchically layered structure in the didodecyldimethylammonium bromide (DDAB)/water binary system: lamellae-in-lamellae is revealed, a new self-assembly structure in surfactant system. This self-assembly structure refers to a lamellar structure with a shorter periodic length (inner lamellae) embedded in a lamellar phase with a longer periodic length (outer lamellae). The normal vectors of these two lamellar regions orient perpendicularly. In addition, it is observed that this lamellar-in-lamellar phase disappears when the two tails of the cationic surfactants become longer. The formation of the lamellar-in-lamellar architecture arises from multiple interacting factors. The key element is that the short tails of the DDAB surfactants enhance hydrophilicity and rigidity, which facilitates the formation of the inner lamellae. Moreover, the lateral monolayer of the inner lamellae provides shielding from the water and prompts the formation of the outer lamellae. These findings indicate that molecular structures and flexibility can profoundly redirect the hierarchical self-assembly behaviors in amphiphilic systems. More broadly, this work presents a new strategy to deliberately program hierarchical nanomaterials by designing specific surfactant molecules to act as tunable scaffolds, reactors, and carriers.
Collapse
Affiliation(s)
- Zhixuan Zhong
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Guanqun Du
- CAS Key Laboratory of ColloidInterface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Linbo Ma
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yilin Wang
- University of Chinese Academy of SciencesBeijing100049P. R. China
- CAS Key Laboratory of ColloidInterface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Jian Jiang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
3
|
El Yousfi R, Brahmi M, Dalli M, Achalhi N, Azougagh O, Tahani A, Touzani R, El Idrissi A. Recent Advances in Nanoparticle Development for Drug Delivery: A Comprehensive Review of Polycaprolactone-Based Multi-Arm Architectures. Polymers (Basel) 2023; 15:1835. [PMID: 37111982 PMCID: PMC10142392 DOI: 10.3390/polym15081835] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Controlled drug delivery is a crucial area of study for improving the targeted availability of drugs; several polymer systems have been applied for the formulation of drug delivery vehicles, including linear amphiphilic block copolymers, but with some limitations manifested in their ability to form only nanoaggregates such as polymersomes or vesicles within a narrow range of hydrophobic/hydrophilic balance, which can be problematic. For this, multi-arm architecture has emerged as an efficient alternative that overcame these challenges, with many interesting advantages such as reducing critical micellar concentrations, producing smaller particles, allowing for various functional compositions, and ensuring prolonged and continuous drug release. This review focuses on examining the key variables that influence the customization of multi-arm architecture assemblies based on polycaprolactone and their impact on drug loading and delivery. Specifically, this study focuses on the investigation of the structure-property relationships in these formulations, including the thermal properties presented by this architecture. Furthermore, this work will emphasize the importance of the type of architecture, chain topology, self-assembly parameters, and comparison between multi-arm structures and linear counterparts in relation to their impact on their performance as nanocarriers. By understanding these relationships, more effective multi-arm polymers can be designed with appropriate characteristics for their intended applications.
Collapse
Affiliation(s)
- Ridouan El Yousfi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Mohamed Brahmi
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco
| | - Mohammed Dalli
- Laboratory of Microbiology, Faculty of Medicine and Pharmacy, University Mohamed Premier, Oujda 60000, Morocco
| | - Nafea Achalhi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, University Mohamed Premier, P. B. 300, Nador 62700, Morocco
| | - Abdesselam Tahani
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco
| | - Rachid Touzani
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Abderrahmane El Idrissi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| |
Collapse
|
4
|
Synthesis and self-assembly of fluorinated supramolecular mesogen-jacketed liquid crystalline polymer and its high-χ block copolymer constructed by hydrogen bonding. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Influence of Interpenetrating Chains on Rigid Domain Dimensions in Siloxane-Based Block-Copolymers. Polymers (Basel) 2022; 14:polym14194048. [PMID: 36235995 PMCID: PMC9572696 DOI: 10.3390/polym14194048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
1H spin-diffusion solid-state NMR was utilized to elucidate the domain size in multiblock-copolymers (BCPs) poly-(block poly(dimethylsiloxane)-block ladder-like poly(phenylsiloxane)) and poly-(block poly((3,3′,3″-trifluoropropyl-methyl)siloxane)-block ladder-like poly(phenylsiloxane). It was found that these BCPs form worm-like morphology with rigid cylinders dispersed in amorphous matrix. By using the combination of solid-state NMR techniques such as 13C CP/MAS, 13C direct-polarization MAS and 2D 1H EXSY, it was shown that the main factor which governs the diameter value of these rigid domains is the presence of interpenetrating segments of soft blocks. The presence of such interpenetrating chains leads to an increase of rigid domain diameter.
Collapse
|
6
|
Ji W, Huang Z, Kentzinger E, Rücker U, Brückel T, Xiao Y. Nanoparticle-induced morphological transformation in block copolymer-based nanocomposites. NANOSCALE 2022; 14:8766-8775. [PMID: 35674291 DOI: 10.1039/d2nr01625g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
By controlling the chemical composition and the spatial organization of nanoparticles, hybrid nanocomposites incorporating ordered arrangements of nanoparticles could be endowed with exotic physical and chemical properties to fulfill demands in advanced electronics or energy-harvesting devices. However, a simple method to fabricate hybrid nanocomposites with precise control of nanoparticle distribution is still challenging. We demonstrate that block copolymer-based nanocomposites containing well-ordered nanoparticles with various morphologies can be readily obtained by adjusting the nanoparticle concentration. Moreover, the structural evolution of nanocomposite thin films as a function of nanoparticle loading is unveiled using grazing-incidence transmission small-angle X-ray scattering and atomic force microscopy. The morphological transformation proceeds through a phase transition from perforated lamellae to in-plane cylinder layout, followed by structural changes. The successful achievement of a variety of morphologies represents an effective and straightforward approach to producing functional hybrid nanocomposites for potential applications in various functional devices.
Collapse
Affiliation(s)
- Wenhai Ji
- School of Advanced Materials, Peking University, Shenzhen Graduate School, 518055 Shenzhen, China.
- Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Zhongyuan Huang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, 518055 Shenzhen, China.
| | - Emmanuel Kentzinger
- Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ulrich Rücker
- Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Thomas Brückel
- Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Yinguo Xiao
- School of Advanced Materials, Peking University, Shenzhen Graduate School, 518055 Shenzhen, China.
| |
Collapse
|
7
|
Yasen W, Dong R, Aini A, Zhu X. Recent advances in supramolecular block copolymers for biomedical applications. J Mater Chem B 2021; 8:8219-8231. [PMID: 32803207 DOI: 10.1039/d0tb01492c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Supramolecular block copolymers (SBCs) have received considerable interest in polymer chemistry, materials science, biomedical engineering and nanotechnology owing to their unique structural and functional advantages, such as low cytotoxicity, outstanding biodegradability, smart environmental responsiveness, and so forth. SBCs comprise two or more different homopolymer subunits linked by noncovalent bonds, and these polymers, in particular, combine the dynamically reversible nature of supramolecular polymers with the hierarchical microphase-separated structures of block polymers. A rapidly increasing number of publications on the synthesis and applications of SBCs have been reported in recent years; however, a systematic summary of the design, synthesis, properties and applications of SBCs has not been published. To this end, this review provides a brief overview of the recent advances in SBCs and describes the synthesis strategies, properties and functions, and their widespread applications in drug delivery, gene delivery, protein delivery, bioimaging and so on. In this review, we aim to elucidate the general concepts and structure-property relationships of SBCs, as well as their practical bioapplications, shedding further valuable insights into this emerging research field.
Collapse
Affiliation(s)
- Wumaier Yasen
- School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China and School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Ruijiao Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. and Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Aliya Aini
- School of Foreign Languages, Xinjiang University, Urumqi 830046, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
8
|
Vapaavuori J, Koskela JE, Wang X, Ras RH, Priimagi A, Bazuin CG, Pellerin C. Effect of hydrogen-bond strength on photoresponsive properties of polymer-azobenzene complexes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Supramolecular complexation between photoresponsive azobenzene chromophores and a photopassive polymer host offers synthetic and design advantages compared with conventional covalent azo-containing polymers. In this context, it is important to understand the impact of the strength of the supramolecular interaction on the optical response. Herein, we study the effect of hydrogen-bonding strength between a photopassive polymer host [poly(4-vinylpyridine), or P4VP] and three azobenzene analogues capable of forming weaker (hydroxyl), stronger (carboxylic acid), or no H-bonding with P4VP. The hydroxyl-functionalized azo forms complete H-bonding complexation up to equimolar ratio with VP, whereas the COOH-functionalized azo reaches only up to 30% H-bond complexation due to competing acid dimerization that leads to partial phase separation and azo crystallization. We show that the stronger azo-polymer H-bonding nevertheless provides higher photoinduced orientation and better performance during optical surface patterning, in terms of grating depth and diffraction efficiency, when phase separation is either avoided altogether or is limited by using relatively low azo contents. These results demonstrate the importance of the H-bonding strength on the photoresponse of azopolymer complexes, as well as the need to consider the interplay between different intermolecular interactions that can affect complexation.
Collapse
Affiliation(s)
- Jaana Vapaavuori
- Département de chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jenni E. Koskela
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, Espoo 02150, Finland
| | - Xiaoxiao Wang
- Département de chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Robin H.A. Ras
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, Espoo 02150, Finland
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Kemistintie 1, Espoo 02150, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33101, Finland
| | | | - Christian Pellerin
- Département de chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
9
|
Shen J, Shafiq MO. Short-term stock market price trend prediction using a comprehensive deep learning system. JOURNAL OF BIG DATA 2020; 7:66. [PMID: 32923309 PMCID: PMC7467129 DOI: 10.1186/s40537-020-00333-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
In the era of big data, deep learning for predicting stock market prices and trends has become even more popular than before. We collected 2 years of data from Chinese stock market and proposed a comprehensive customization of feature engineering and deep learning-based model for predicting price trend of stock markets. The proposed solution is comprehensive as it includes pre-processing of the stock market dataset, utilization of multiple feature engineering techniques, combined with a customized deep learning based system for stock market price trend prediction. We conducted comprehensive evaluations on frequently used machine learning models and conclude that our proposed solution outperforms due to the comprehensive feature engineering that we built. The system achieves overall high accuracy for stock market trend prediction. With the detailed design and evaluation of prediction term lengths, feature engineering, and data pre-processing methods, this work contributes to the stock analysis research community both in the financial and technical domains.
Collapse
Affiliation(s)
- Jingyi Shen
- School of Information Technology, Carleton University, Ottawa, ON Canada
| | - M. Omair Shafiq
- School of Information Technology, Carleton University, Ottawa, ON Canada
| |
Collapse
|
10
|
Liang Y, Ouyang W, Wang P, Zhang W, Wang S, Tian L, Ju Y, Li G. Block copolymer assisted topochemical polymerization: A facile and efficient route to robust polymeric nanoporous membranes decorated with versatile amino acids. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Wu JB, Liu H, Lu ZY. Simulation Study of Process-Controlled Supramolecular Block Copolymer Phase Separation with Reversible Reaction Algorithm. Polymers (Basel) 2020; 12:E528. [PMID: 32121599 PMCID: PMC7182871 DOI: 10.3390/polym12030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 11/30/2022] Open
Abstract
A supramolecular diblock copolymer formed by reversible bonds between the two blocks shows a rich microphase separation behavior and has great application potential in stimuli-responsive materials. We propose a novel method to describe supramolecular reactions in dissipative particle dynamics, which includes a reversible reaction to accurately reproduce the strength, saturation, and dynamic properties of the reversible bonds in the simulations. The thermodynamic properties and dynamic processes of the supramolecular diblock copolymer melts in both equilibrium and non-equilibrium states were studied using this method. The simulation results show that the method can faithfully characterize phase behaviors and dynamic properties of supramolecular diblock copolymer melts, especially in a non-equilibrium state, which provides a novel tool to unveil self-assembly mechanism and describe the properties of supramolecular block copolymers.
Collapse
Affiliation(s)
- Jian-Bo Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China;
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510631, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China;
| |
Collapse
|
12
|
Man Y, Li X, Li S, Yang Z, Lee YI, Liu HG. Effects of hydrophobic/hydrophilic blocks ratio on PS-b-PAA self-assembly in solutions, in emulsions, and at the interfaces. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Hu W, Shao Z, Zhang D, Xu Y. Phase Diagram of Hierarchical Structures Formed from A(BC)
2
B Multiblock Copolymers. MACROMOL THEOR SIMUL 2019. [DOI: 10.1002/mats.201900004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Weiguo Hu
- Faculty of Materials Science and Chemical EngineeringNingbo University Ningbo Zhejiang 315211 China
| | - Zhanwei Shao
- Faculty of Materials Science and Chemical EngineeringNingbo University Ningbo Zhejiang 315211 China
| | - Di Zhang
- Faculty of Materials Science and Chemical EngineeringNingbo University Ningbo Zhejiang 315211 China
| | - Yuci Xu
- Faculty of Materials Science and Chemical EngineeringNingbo University Ningbo Zhejiang 315211 China
- State Key Laboratory of Molecular Engineering of PolymerDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| |
Collapse
|
14
|
Zhu J, Xiao Y, Zhang H, Li Y, Yuan Y, Yang Z, Chen S, Zheng X, Zhou X, Jiang ZX. Peptidic Monodisperse PEG “combs” with Fine-Tunable LCST and Multiple Imaging Modalities. Biomacromolecules 2019; 20:1281-1287. [DOI: 10.1021/acs.biomac.8b01693] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Junfei Zhu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yan Xiao
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Huaibin Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Li
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaping Yuan
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shizhen Chen
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Xin Zhou
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
15
|
Hofman A, Terzic I, Stuart MCA, ten Brinke G, Loos K. Hierarchical Self-Assembly of Supramolecular Double-Comb Triblock Terpolymers. ACS Macro Lett 2018; 7:1168-1173. [PMID: 30356968 PMCID: PMC6195812 DOI: 10.1021/acsmacrolett.8b00570] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Involving supramolecular chemistry in self-assembling block copolymer systems enables design of macromolecular architectures that are challenging to obtain through conventional all-covalent routes. In this work we present supramolecular double-comb triblock terpolymers in which both outer blocks are able to interact with a surfactant via hydrogen bonding and thereby form a comb-shaped architecture upon complexation. While the neat triblock terpolymer only formed a triple lamellar morphology, multiple hierarchical structures were observed in these supramolecular comb-coil-comb triblock terpolymers by simply adjusting the surfactant concentration. Structures included spheres on tetragonally packed cylinders-in-lamellae and spheres on double parallel lamellae-in-lamellae, as evidenced by electron microscopy and X-ray scattering. Incorporation of a middle coil block thus allowed an even higher macromolecular complexity than the previously reported double-comb diblock copolymers.
Collapse
Affiliation(s)
- Anton
H. Hofman
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ivan Terzic
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marc C. A. Stuart
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Electron
Microscopy Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Gerrit ten Brinke
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Katja Loos
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
16
|
Wang Y, Weng F, Li J, Lai L, Yu W, Severtson SJ, Wang WJ. Influence of Phase Separation on Performance of Graft Acrylic Pressure-Sensitive Adhesives with Various Copolyester Side Chains. ACS OMEGA 2018; 3:6945-6954. [PMID: 31458860 PMCID: PMC6644624 DOI: 10.1021/acsomega.8b00737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/12/2018] [Indexed: 06/10/2023]
Abstract
Acrylic pressure-sensitive adhesives with various polyester side-chain lengths were synthesized to investigate the effect of branching on phase separation and polymer mechanical performance. The polyester macromonomers (MMs) were produced through ring-opening co-polymerizations of l-lactide (l-LA) and ε-caprolactone (ε-CL) initiated with 2-hydroxyethyl methacrylate (HEMA), which provides the polyester chains with terminal vinyl groups. By varying the HEMA content, a range of MM chain lengths constructed from L10C4 (five l-LA and four ε-CL units) to L100C40 were obtained at a constant monomer mole ratio. Copolymerization of 2-ethylhexyl acrylate and acrylic acid with these MMs at constant mass composition provided a series of comb copolymers consisting of acrylic backbones with polyester branches of various chain lengths. Characterization of thin films cast from the polymers using thermal analysis and scanning probe microscopy showed a transition from a homogeneous phase to the formation of distinct microphases with increasing branching chain lengths. Rheological analysis of the linear viscoelastic responses was also used through small-amplitude oscillatory shear, and dynamic master curves were constructed by time-temperature superposition. The rheological data were also consistent with phase separation for the longer side-chain lengths of L50C20 and L100C40. The extra elastic contribution at low frequency and the temperature dependence of a T both show obviously effect of separated phases. Performance testing of polymer films showed that the chain extension resulted in a significant increase in both peel strength and shear resistance, which was accompanied by a modest decrease in film tackiness. The results demonstrate that tailoring branch chain structures provide a promising means for controlling the properties of the high-biomass content adhesive polymers.
Collapse
Affiliation(s)
- Yanjiao Wang
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | - Feiyin Weng
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | - Jiaxu Li
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | - Lei Lai
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | - Wei Yu
- Advanced
Rheology Institute, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Steven John Severtson
- Department
of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, Saint Paul, Minnesota 55108, United States
| | - Wen-Jun Wang
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
17
|
Guo Y, Wang T, Zhao S, Han M, Dong Z, Wang X, Wang Y. Amphiphilic Hybrid Dendritic-Linear Molecules as Nanocarriers for Shape-Dependent Antitumor Drug Delivery. Mol Pharm 2018; 15:2665-2673. [DOI: 10.1021/acs.molpharmaceut.8b00190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Ting Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
| | - Shuang Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
18
|
Barber DM, Crosby AJ, Emrick T. Mesoscale Block Copolymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706118. [PMID: 29380431 DOI: 10.1002/adma.201706118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Materials composed of well-defined mesoscale building blocks are ubiquitous in nature, with noted ability to assemble into hierarchical structures possessing exceptional physical and mechanical properties. Fabrication of similar synthetic mesoscale structures will offer opportunities for precise conformational tuning toward advantageous bulk properties, such as increased toughness or elastic modulus. This requires new materials designs to be discovered to impart such structural control. Here, the preparation of mesoscale polymers is achieved by solution fabrication of functional polymers containing photoinduced chemical triggers. Subsequent photopatterning affords mesoscale block copolymers composed of distinct segments of alternating chemical composition. When dispersed in appropriate solvents, selected segments form helices to generate architectures resembling block copolymers, but on an optically observable size scale. This approach provides a platform for producing mesoscale geometries with structural control and potential for driving materials assembly comparable to examples found in nature.
Collapse
Affiliation(s)
- Dylan M Barber
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Amherst, MA, 01003-9263, USA
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Amherst, MA, 01003-9263, USA
| | - Todd Emrick
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Amherst, MA, 01003-9263, USA
| |
Collapse
|
19
|
Wang Z, Sun S, Li C, Hu S, Faller R. Controllable multicompartment morphologies from cooperative self-assembly of copolymer-copolymer blends. SOFT MATTER 2017; 13:5877-5887. [PMID: 28766653 DOI: 10.1039/c7sm01194f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multicompartment nanostructures, such as microcapsules with clearly separated shell and core, are not easily accessible by conventional block copolymer self-assembly. We assess a versatile computational strategy through cooperative assembly of diblock copolymer blends to generate spherical and cylindrical compartmentalized micelles with intricate structures and morphologies. The co-assembly strategy combines the advantages of polymer blending and incompatibility-induced phase separation. Following this strategy, various nanoassemblies of pure AB, binary AB/AC and ternary AB/AC/AD systems such as compartmentalized micelles with sponge-like, Janus, capsule-like and onion-like morphologies can be obtained. The formation and structural adjustment of microcapsule micelles, in which the shell or core can be occupied by either pure or mixed diblock copolymers, were explored. The mechanism involving the separation of shell and core copolymers is attributed to the stretching force differences of copolymers which drive the arrangement of different copolymers in a pathway to minimize the total interfacial energy. Moreover, by adjusting block interactions, an efficient approach is exhibited for regulating the shell or core composition and morphology in microcapsule micelles, such as the transition from the "pure shell/mixed core" morphology to the "mixed shell/pure core" morphology in the AB/AC/AD micelle. This mesoscale simulation study identifies the key factors governing co-assembly of diblock copolymer blends and provides bottom-up insights towards the design and optimization of new multicompartment micelles.
Collapse
Affiliation(s)
- Zhikun Wang
- College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | | | | | | | | |
Collapse
|
20
|
Hofman AH, Reza M, Ruokolainen J, Ten Brinke G, Loos K. The Origin of Hierarchical Structure Formation in Highly Grafted Symmetric Supramolecular Double-Comb Diblock Copolymers. Macromol Rapid Commun 2017; 38. [PMID: 28749009 DOI: 10.1002/marc.201700288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/11/2017] [Indexed: 01/18/2023]
Abstract
Involving supramolecular chemistry in self-assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double-comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers and donating 3-nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae-in-lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature-resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock-like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self-assembly of both low- and high-molecular-weight block copolymer systems.
Collapse
Affiliation(s)
- Anton H Hofman
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Mehedi Reza
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076, Aalto, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076, Aalto, Finland
| | - Gerrit Ten Brinke
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
21
|
Hofman AH, ten Brinke G, Loos K. Asymmetric supramolecular double-comb diblock copolymers: From plasticization, to confined crystallization, to breakout. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Bilal MH, Hussain H, Prehm M, Baumeister U, Meister A, Hause G, Busse K, Mäder K, Kressler J. Synthesis of poly(glycerol adipate)- g -oleate and its ternary phase diagram with glycerol monooleate and water. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
|