1
|
Li Q, Quan X, Hu R, Hu Z, Xu S, Liu H, Zhou X, Han B, Ji X. A Universal Strategy for Constructing Hydrogel Assemblies Enabled by PAA Hydrogel Adhesive. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403844. [PMID: 39444198 DOI: 10.1002/smll.202403844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/11/2024] [Indexed: 10/25/2024]
Abstract
Hydrogel is a significant type of building block for constructing macroscopic assemblies, the construction of which usually entails the incorporation of supramolecular groups. However, supramolecular group recognition is specific and only suitable for assembling two particular modified hydrogels, but not a versatile strategy. Herein, a universal strategy without modification process is proposed using polyacrylic acid (PAA) hydrogel as the adhesive layer to assemble different kinds of hydrogels. Furthermore, hydrogel assemblies with various shapes and multi-stimuli responsiveness are constructed by assembling different stimuli-responsive hydrogels with PAA hydrogel. Therefore, hydrogel assemblies are able to complete bending motions upon applying corresponding stimuli. This strategy provides a universal approach for constructing hydrogel assemblies, and also shows the potential for developing soft robots with versatile functions.
Collapse
Affiliation(s)
- Qingyun Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xinyi Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rui Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ziqing Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shaoyu Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hui Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiaohe Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bin Han
- State Key Laboratory of Intelligent ManufacturingEquipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiaofan Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Ruiz-Virgen L, Hernandez-Martinez MA, Martínez-Mejía G, Caro-Briones R, Herbert-Pucheta E, Río JMD, Corea M. Analysis of Structural Changes of pH-Thermo-Responsive Nanoparticles in Polymeric Hydrogels. Gels 2024; 10:541. [PMID: 39195070 DOI: 10.3390/gels10080541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The pH- and thermo-responsive behavior of polymeric hydrogels MC-co-MA have been studied in detail using dynamic light scattering DLS, scanning electron microscopy SEM, nuclear magnetic resonance (1H NMR) and rheology to evaluate the conformational changes, swelling-shrinkage, stability, the ability to flow and the diffusion process of nanoparticles at several temperatures. Furthermore, polymeric systems functionalized with acrylic acid MC and acrylamide MA were subjected to a titration process with a calcium chloride CaCl2 solution to analyze its effect on the average particle diameter Dz, polymer structure and the intra- and intermolecular interactions in order to provide a responsive polymer network that can be used as a possible nanocarrier for drug delivery with several benefits. The results confirmed that the structural changes in the sensitive hydrogels are highly dependent on the corresponding critical solution temperature CST of the carboxylic (-COOH) and amide (-CONH2) functional groups and the influence of calcium ions Ca2+ on the formation or breaking of hydrogen bonds, as well as the decrease in electrostatic repulsions generated between the polymer chains contributing to a particle agglomeration phenomenon. The temperature leads to a re-arrangement of the polymer chains, affecting the viscoelastic properties of the hydrogels. In addition, the diffusion coefficients D of nanoparticles were evaluated, showing a closeness among with the morphology, shape, size and temperature, resulting in slower diffusions for larger particles size and, conversely, the diffusion in the medium increasing as the polymer size is reduced. Therefore, the hydrogels exhibited a remarkable response to pH and temperature variations in the environment. During this research, the functionality and behavior of the polymeric nanoparticles were observed under different analysis conditions, which revealed notable structural changes and further demonstrated the nanoparticles promising high potential for drug delivery applications. Hence, these results have sparked significant interest in various scientific, industrial and technological fields.
Collapse
Affiliation(s)
- Lazaro Ruiz-Virgen
- Laboratorio de Investigación en Polímero y Nanomateriales, ESIQIE, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico
| | - Miguel Angel Hernandez-Martinez
- Laboratorio de Investigación en Polímero y Nanomateriales, ESIQIE, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico
| | - Gabriela Martínez-Mejía
- Laboratorio de Investigación en Polímero y Nanomateriales, ESIQIE, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico
| | - Rubén Caro-Briones
- Laboratorio de Investigación en Polímero y Nanomateriales, ESIQIE, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico
- Escuela Superior de Ingeniería Mecánica y Eléctrica, ESIME, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico
| | - Enrique Herbert-Pucheta
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Mexico City 11340, Mexico
| | - José Manuel Del Río
- Departamento de Ingeniería en Metalurgia y Materiales, ESIQIE, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico
| | - Mónica Corea
- Laboratorio de Investigación en Polímero y Nanomateriales, ESIQIE, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico
| |
Collapse
|
3
|
Ren J, Yang X. Nanomotor-hydrogel Delivery System with Enhanced Antibacterial Performance for Wound Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39016444 DOI: 10.1021/acs.langmuir.4c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
In this study, we present a novel system consisting of nanomotors and a hydrogel. Calcium carbonate nanomotors are prepared using layer-by-layer self-assembly technology with calcium carbonate nanoparticles as the core and catalase (CAT) and polydopamine (PDA) as the shell. Calcium carbonate nanomotors were loaded into a Schiff base hydrogel to synthesize the CaCO3@NM-hydrogel system. A nanomotor is a device that works on the nanoscale to convert some form of energy to mechanical energy. The motion speed of the system in 5.0 mM H2O2 aqueous solution under near-infrared light (NIR) irradiation with a power density of 1.8 W/cm2 is 13.6 μm/s. The addition of CaCO3@NM further promotes gelation and improves the mechanical properties. The energy storage modulus increases to 4.0 × 103 Pa, which is 50 times higher. Schiff base hydrogels form dynamic reversible chemical bonds due to inter- and intramolecular hydrogen bonding. They also have good self-healing properties, as observed by measuring the energy storage modulus versus the loss modulus at 1 versus 10 kHz. The results show that the system significantly inhibited the growth of both Gram-positive bacteria, Staphylococcus aureus, and Gram-negative bacteria, Escherichia coli, after 48 h, with an inhibition rate of nearly 95%. These findings provide a basis for further research and potential applications of the system in wound dressings.
Collapse
Affiliation(s)
- Jiaoyu Ren
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Xinyu Yang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| |
Collapse
|
4
|
Li H, Zhou J, Yu J, Zhao J. Light-activated cellulose nanocrystals/fluorinated polyacrylate-based waterborne coating: Facile preparation, mechanical and self-healing behavior. Int J Biol Macromol 2023; 249:126062. [PMID: 37524288 DOI: 10.1016/j.ijbiomac.2023.126062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The development of environmental-friendly self-healing nanocomposites has attracted much attention. In this paper, the light-activated cellulose nanocrystals/ fluorinated polyacrylate-based waterborne coating based on the reversible cycloaddition reaction of the coumarin groups was prepared via Pickering emulsion polymerization. The cellulose nanocrystals (CNCs) modified by the PDMAEMA-b-PGMA-b-P(HFBA-co-VBMC) copolymer were studied via FT-IR and TGA. In addition, the dispersity and interface behavior of CNCs before and after modification were investigated by DLS and interfacial tension measurements. Afterwards, we focused on the influence of modified CNCs, PDMAEMA-g-CNC-g- P(HFBA-co-VBMC) (MCNC) dosage on the Pickering emulsion, emulsion polymerization and properties of latex film. The droplet diameter of Pickering emulsion gradually reduced with the increase of MCNC dosage. The MCNC dosage for the minimum average size and optimum stability of latex particles was 1.0 wt%. Moreover, the latex film comprising 1.0 wt% MCNC presented not only high tensile stress (6.0 MPa), large elongation at break (567.70 %) and superior oil/water repellency but also excellent self-healing properties. The outstanding self-healing capability of latex film was attributed to the reversible light-activated dimerization of coumarin groups. The preparation method for the advanced performance waterborne cellulose nanocrystals/fluorinated polyacrylate will provide valuable guidance for the development of versatile materials.
Collapse
Affiliation(s)
- Hong Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianhua Zhou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jiarui Yu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiaojiao Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
5
|
Liu X, Wu J, Tang Z, Wu J, Huang Z, Yin X, Du J, Lin X, Lin W, Yi G. Photoreversible Bond-Based Shape Memory Polyurethanes with Light-Induced Self-Healing, Recyclability, and 3D Fluorescence Encryption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33829-33841. [PMID: 35830501 DOI: 10.1021/acsami.2c07767] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing a shape memory polyurethane with high mechanical properties, excellent self-healing has become a huge challenge for the development of smart materials. Herein, we report the design and fabrication of a shape memory polyurethane network terminated with coumarin units (HEOMC-PU) to address this conundrum. The synthesized HEOMC-PU exhibits exceptional mechanical performance with a breaking elongation of 746% and toughness of 55.5 MJ·m-3. By utilizing the dynamically reversible behavior of coumarin units to repair the damaged network, the efficient self-healing performance (99.2%) of HEOMC-PU is obtained. In addition, the prepared network and light-induced dynamic reversibility endow the HEOMC-PU with both liquid-state remoldability and solid-state plasticity, respectively, enabling polyurethane to be recycled and processed multiple times. Furthermore, based on the fluorescence responsive characteristic of coumarin, HEOMC-PU with a fluorescent pattern can be deformed into specific three-dimensional configurations by combining photolithography, self-healing, and the shape memory effect. Such a multilevel and multidimensional anti-counterfeiting platform with rewritable fluorescent patterns and reconfigurable shapes can open up a new encryption approach for future intelligent anti-counterfeiting.
Collapse
Affiliation(s)
- Xiaochun Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianyu Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zilun Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianxin Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyi Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingshan Yin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiahao Du
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| |
Collapse
|
6
|
Li D, Göckler T, Schepers U, Srivastava S. Polyelectrolyte Complex-Covalent Interpenetrating Polymer Network Hydrogels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Defu Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tobias Göckler
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Ute Schepers
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Samanvaya Srivastava
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Center for Biological Physics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Preparation and Characterizations of PSS/PDADMACPolyelectrolyte Complex Hydrogel. Polymers (Basel) 2022; 14:polym14091699. [PMID: 35566868 PMCID: PMC9103824 DOI: 10.3390/polym14091699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Polyelectrolyte complex (PEC) hydrogel, formed via physically electrostatic crosslinks between polyanion and polycation, is an interesting hydrogel in terms of its nontoxicity and solvent-free technique. In this work, poly (sodium 4-styrenesulfonate) (PSS)/poly (diallyl dimethyl ammonium chloride) (PDADMAC) complex hydrogels were prepared. Firstly, the PSS/PDADMAC complex aggregates using various PSS/PDADMAC mole fractions that were prepared in the presence of NaCl solution. Then, the aggregates were resolubilized under stirring at 70 °C for 2 h to obtain a homogeneous PEC solution. Finally, the PEC solution was dialyzed using a dialysis membrane with 3500 molecular cut-off for 1 day. The dialysis bath was changed every interval period of 2 h to control the rate of reversible electrostatic interaction, resulting in the homogenous PEC hydrogel with porous morphology as revealed by SEM and BET investigations. The dimensional stability and viscoelasticity of the PEC hydrogel was studied by DMA experiment, which showed the viscoelastic behavior at a compressive force ranging from 0 to 0.1 N. Finally, PSS/PDADMAC hydrogels showed a high water absorbency property and excellent affinity to textile anionic dyes.
Collapse
|
8
|
Kim HC, Kim E, Hong BM, Park SA, Park WH. Photocrosslinked poly(γ-glutamic acid) hydrogel for 3D bioprinting. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Preparation and solution properties of helical sulfonium-based polypeptides and their polyelectrolyte complexes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Liang X, Ding H, Wang Q, Wang M, Yin B, Sun G. Nature-inspired semi-IPN hydrogels with tunable mechanical properties and multi-responsiveness. NEW J CHEM 2021. [DOI: 10.1039/d0nj04675b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tough hydrogels (PAP hydrogels) with high mechanical properties and multi-responsiveness.
Collapse
Affiliation(s)
- Xiaoxu Liang
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Avenida da Universidade
- Taipa
| | - Hongyao Ding
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Avenida da Universidade
- Taipa
| | - Qiao Wang
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Avenida da Universidade
- Taipa
| | - Miaomiao Wang
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Avenida da Universidade
- Taipa
| | - Bibo Yin
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Avenida da Universidade
- Taipa
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Avenida da Universidade
- Taipa
| |
Collapse
|
11
|
The flexible segment adjusted gelation of the aliphatic polycarbonates: Preparation, mechanical properties, and self-healing behavior. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Singh R, Pal D, Chattopadhyay S. Target-Specific Superparamagnetic Hydrogel with Excellent pH Sensitivity and Reversibility: A Promising Platform for Biomedical Applications. ACS OMEGA 2020; 5:21768-21780. [PMID: 32905505 PMCID: PMC7469382 DOI: 10.1021/acsomega.0c02817] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Superparamagnetism has been widely used for many biomedical applications, such as early detection of inflammatory cancer and diabetes, magnetic resonance imaging (MRI), hyperthermia, etc., whereas incorporation of superparamagnetism in stimulus-responsive hydrogels has now gained substantial interest and attention for application in these fields. Recently, pH-responsive superparamagnetic hydrogels showing the potential use in disease diagnosis, biosensors, polymeric drug carriers, and implantable devices, have been developed based on the fact that pH is an important environmental factor in the body and some disease states manifest themselves by a change in the pH value. However, improvement in pH sensitivity of magnetic hydrogels is a dire need for their practical applications. In this study, we report the distinctly high pH sensitivity of new synthesized dual-responsive magnetic hydrogel nanocomposites, which was accomplished by copolymerization (free-radical polymerization) of two pH-sensitive monomers, acrylic acid (AA) and vinylsulfonic acid (VSA) with an optimum ratio, in the presence of presynthesized superparamagnetic iron oxide nanoparticles (Fe3O4(OH) x ). The monomers contain pH-sensitive functional groups (COO- and SO3 - for AA and VSA, respectively), and they have also been widely used as biomaterials because of the good biocompatibility. The pH sensitivity of the superparamagnetic hydrogel, poly(acrylic acid-co-vinylsulfonic acid), PAAVSA/Fe3O4, was investigated by swelling studies at different pH values from pH 7 to 1.4. Distinct pH reversibility of the system was also demonstrated through swelling/deswelling analysis. Thermal stability, chemical configuration, magnetic response, and structural properties of the system have been explored by suitable characterization techniques. Furthermore, the study reveals a pH-responsive significant change in the overall morphology and packing fraction of iron oxide nanoparticles in PAAVSA/Fe3O4 via energy-dispersive X-ray (EDX) elemental mapping with the field emission scanning electron microscopy (FESEM) study (for freeze-dried PAAVSA/Fe3O4, swelled at different pH values), implying a drastic change in susceptibility and induced saturation magnetization of the system. These important features could be easily utilized for the purpose of diagnosis using magnetic probe and/or impedance analysis techniques.
Collapse
Affiliation(s)
- Rinki Singh
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Dipayan Pal
- Discipline
of Physics, Indian Institute of Technology
Indore, Indore 453552, India
| | - Sudeshna Chattopadhyay
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
- Discipline
of Physics, Indian Institute of Technology
Indore, Indore 453552, India
- Discipline
of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
13
|
Haag SL, Bernards MT. Enhanced Biocompatibility of Polyampholyte Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3292-3299. [PMID: 32160745 DOI: 10.1021/acs.langmuir.0c00114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tissue-engineered scaffolds encounter many challenges including poor integration with native tissue. Nonspecific protein adsorption can trigger the foreign body response leading to encapsulation and isolation from the native injured tissue. This concern is mitigated with nonfouling polymer scaffolds. This study investigates the long-term biocompatibility of a nonfouling polyampholyte system composed of positively charged [2-(acryloyloxy)ethyl]trimethylammonium chloride monomers and negatively charged 2-carboxyethyl acrylate monomers, cross-linked with triethylene glycol dimethacrylate. This system has previously shown resistance to nonspecific protein adsorption and short-term cell attachment via conjugated proteins. However, longer-term cell survival has not been evaluated with this system. First, the environmental pH was monitored with varying amounts of counter ions present in the hydrogel synthesis buffer. The lowest level (3 M NaOH) and the level that resulted in pH values closest to physiological conditions (6.7 M NaOH) were chosen for further investigation. These two formulations were then compared in terms of their contact angle, qualitative protein adsorption and conjugation capacity, and quantitative cell adhesion, proliferation, and viability. The 3 M NaOH formulation showed higher initial protein conjugation and cell adhesion compared to the 6.7 M NaOH formulation. However, the 3 M NaOH hydrogels had low cell viability after 24 h due to the acidic component release into the culture environment. The 6.7 M NaOH formulation showed a lower initial conjugation and cell adhesion but overcame this limitation by providing a stable environment that maintained cell viability for over 5 days. The 6.7 M NaOH polyampholyte hydrogel formulation shows increased biocompatibility, while maintaining resistance to nonspecific protein adsorption, as demonstrated by the targeted cell adhesion and proliferation. Therefore, this polyampholyte formulation demonstrates strong potential as a tissue-engineered scaffold.
Collapse
Affiliation(s)
- Stephanie L Haag
- Department of Chemical & Materials Engineering, University of Idaho, Moscow, Idaho 83843, United States
| | - Matthew T Bernards
- Department of Chemical & Materials Engineering, University of Idaho, Moscow, Idaho 83843, United States
| |
Collapse
|
14
|
Han Z, Wang P, Mao G, Yin T, Zhong D, Yiming B, Hu X, Jia Z, Nian G, Qu S, Yang W. Dual pH-Responsive Hydrogel Actuator for Lipophilic Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12010-12017. [PMID: 32053341 DOI: 10.1021/acsami.9b21713] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As one of the most promising drug delivery carriers, hydrogels have received considerable attention in recent years. Many previous efforts have focused on diffusion-controlled release, which allows hydrogels to load and release drugs in vitro and/or in vivo. However, it hardly applies to lipophilic drug delivery due to their poor compatibility with hydrogels. Herein, we propose a novel method for lipophilic drug release based on a dual pH-responsive hydrogel actuator. Specifically, the drug is encapsulated and can be released by a dual pH-controlled capsule switch. Inspired by the deformation mechanism of Drosera leaves, we fabricate the capsule switch with a double-layer structure that is made of two kinds of pH-responsive hydrogels. Two layers are covalently bonded together through silane coupling agents. They can bend collaboratively in a basic or acidic environment to achieve the "turn on" motion of the capsule switch. By incorporating an array of parallel elastomer stripes on one side of the hydrogel bilayer, various motions (e.g., bending, twisting, and rolling) of the hydrogel bilayer actuator were achieved. We conducted an in vitro lipophilic drug release test. The feasibility of this new drug release method is verified. We believe this dual pH-responsive actuator-controlled drug release method may shed light on the possibilities of various drug delivery systems.
Collapse
Affiliation(s)
- Zilong Han
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Peng Wang
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Guoyong Mao
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Tenghao Yin
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Danming Zhong
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Burebi Yiming
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Xiaocheng Hu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Zheng Jia
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Guodong Nian
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Shaoxing Qu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Wei Yang
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Zhang Y, Desai MS, Wang T, Lee SW. Elastin-Based Thermoresponsive Shape-Memory Hydrogels. Biomacromolecules 2020; 21:1149-1156. [PMID: 31967464 DOI: 10.1021/acs.biomac.9b01541] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A shape-memory hydrogel is a programmable hydrogel material that can store specific shapes and execute functions in response to stimuli. In this report, we developed shape-memory hydrogels by creating double-network polymeric structures using a physically cross-linking elastin-like polypeptide (ELP) and a chemically cross-linking polyacrylamide (PAM). We synthesized the hydrogel matrix by polymerizing the acrylamide mixed in an ELP solution. We exploited the lower critical solution temperature transition of the ELP to enable the hydrogel to hold a new desired shape at an elevated temperature of 55 °C. The original shape of the hydrogel can then be recovered by lowering the temperature to 20 °C. The shape-memory hydrogels we developed exhibit ultrafast functionality and high repeatability. Taking advantage of the temperature-induced shape-memory capability, we also demonstrate practical functions such as gripping an object and connecting two tubes. Our materials with effective temperature-driven shape-memory functionality will be useful for developing novel materials for biomedical applications in the future.
Collapse
Affiliation(s)
- Yuancheng Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Research Institute of Materials Science, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, P. R. China
| | - Malav S Desai
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Tsinghua Berkeley Shenzhen Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Tao Wang
- Research Institute of Materials Science, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, P. R. China
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Tsinghua Berkeley Shenzhen Institute, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Qian C, Asoh TA, Uyama H. Osmotic squat actuation in stiffness adjustable bacterial cellulose composite hydrogels. J Mater Chem B 2020; 8:2400-2409. [DOI: 10.1039/c9tb02880c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive stiffness change and squat actuation were realized in bacterial cellulose hydrogels by utilizing internal osmotic pressure changes.
Collapse
Affiliation(s)
- Chen Qian
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- 2-1 Yamadaoka
- Suita
| | - Taka-Aki Asoh
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- 2-1 Yamadaoka
- Suita
| | - Hiroshi Uyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- 2-1 Yamadaoka
- Suita
| |
Collapse
|
17
|
Monteiro GAA, Silva WMD, Sousa RGD, Sousa EMBD. SBA-15/P[(N-ipaam)-co-(MAA)] thermo and pH-sensitive hybrid systems and their methotrexate (MTX) incorporation and release studies. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Jannat NE, Alam MA, Rahman M, Rahman M, Hossain M, Hossain S, Minami H, Ahmad H. Carboxylic acid modified pH-responsive composite polymer particles. JOURNAL OF POLYMER ENGINEERING 2019. [DOI: 10.1515/polyeng-2019-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
pH-responsive polymers are attracting much interest from researchers because of their wide application potentials in areas like biosensor, bioseparator, bioreactor, biocatalysis, drug delivery, and water treatments. In this investigation a two-step process is evaluated to prepare carboxyl(–COOH) functional submicrometer-sized pH-responsive composite polymer particles. First, submicrometer-sized polystyrene (PS) particles are prepared by a modified conventional dispersion polymerization. In the second step, PS/poly(methacrylic acid-acrylamide-ethylene glycol dimethacrylate) [PS/P(MAA-AAm-EGDMA)] composite polymer particles are synthesized by seeded co-polymerization of methacrylic acid, acrylamide, and ethylene glycol dimethacrylate in the presence of PS seed particles. The size distributions and morphologies analyzed by electron micrographs suggested that seeded copolymerization smoothly occurred without formation of any secondary tiny copolymer particles. The surface composition and functionality are confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance. The hydrodynamic diameter increased with the increase in pH values as part of the carboxyl groups are deprotonated, which favored the swelling of copolymer layer formed around the surface of PS particles. The adsorption of cationic and anionic surfactants at two different pH values showed that adsorption of cationic surfactant is favored at higher pH value whereas that of anionic surfactant is favored at lower pH value.
Collapse
Affiliation(s)
- Nur E. Jannat
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - Md. Ashraful Alam
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - M.A. Rahman
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - M.M. Rahman
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - M.K. Hossain
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - S. Hossain
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - H. Minami
- Graduate School of Engineering , Kobe University , Kobe 657-8501 , Japan
| | - Hasan Ahmad
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| |
Collapse
|
19
|
Yue Z, Che Y, Jin Z, Wang S, Ma Q, Zhang Q, Tan Y, Meng F. A facile method to fabricate thermo- and pH-sensitive hydrogels with good mechanical performance based on poly(ethylene glycol) methyl ether methacrylate and acrylic acid as a potential drug carriers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1375-1398. [PMID: 31220422 DOI: 10.1080/09205063.2019.1634859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A thermo- and pH-sensitive hydrogel was prepared by a facile free aqueous radical copolymerization of PEGMA and AAc without any crosslinkers for controlled drug delivery. The successful fabrication of hydrogels was confirmed by Fourier transform infrared spectroscopy (FT-IR) and thermo gravimetric analysis (TGA) measurements. The morphological, mechanical and swelling properties of the obtained hydrogels were studied systematically. The results showed that the morphological and mechanical behaviors of the resultant hydrogels were strongly affected by the content of AAc. Moreover, the obtained hydrogels showed an excellent thermo-, pH- and salinity sensitivities. Release profiles of 5-Fu were studied at different pH (gastric pH 1.2 and intestinal pH 7.4) and temperatures (25 °C and 37 °C). The results showed that the release is very low at pH 1.2/37 °C and high at pH 7.4/25 °C. The cytotoxicity of hydrogels to cells was determined by an MTT assay. The result demonstrated that the blank hydrogels had negligible toxicity to cells, whereas the 5-Fu-loaded hydrogels remained high in cytotoxicity for LO2 and HepG-2 cells. Results of the present investigation exemplify the potential of this novel thermo- and pH-sensitive hydrogel for the controlled and targeted delivery of the anti cancer drug 5-Fu.
Collapse
Affiliation(s)
- Zhen Yue
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| | - YuJu Che
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| | - Zhiwen Jin
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| | - Sisi Wang
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| | - Qinglin Ma
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| | - Qian Zhang
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| | - Yebang Tan
- b School of Chemistry and Chemical Engineering, Shandong University , Jinan , PR China
| | - Fanjun Meng
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| |
Collapse
|
20
|
|
21
|
Preparation of polyelectrolyte complex gel of sodium alginate with chitosan using basic solution of chitosan. Int J Biol Macromol 2019; 126:54-59. [DOI: 10.1016/j.ijbiomac.2018.12.195] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 11/22/2022]
|
22
|
Costa MP, Prates LM, Baptista L, Cruz MT, Ferreira IL. Interaction of polyelectrolyte complex between sodium alginate and chitosan dimers with a single glyphosate molecule: A DFT and NBO study. Carbohydr Polym 2018; 198:51-60. [DOI: 10.1016/j.carbpol.2018.06.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023]
|
23
|
Preparation of the chitosan/poly(glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property. Carbohydr Polym 2018; 191:8-16. [DOI: 10.1016/j.carbpol.2018.02.065] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 01/26/2023]
|
24
|
Qian C, Asoh TA, Uyama H. Sea cucumber mimicking bacterial cellulose composite hydrogel with ionic strength-sensitive mechanical adaptivity. Chem Commun (Camb) 2018; 54:11320-11323. [DOI: 10.1039/c8cc05779f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel sea cucumber-mimicking bacterial cellulose composite hydrogel shows stiffness changes in response to ionic strength without significant volume changes.
Collapse
Affiliation(s)
- Chen Qian
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Taka-Aki Asoh
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
25
|
Haag SL, Bernards MT. Polyampholyte Hydrogels in Biomedical Applications. Gels 2017; 3:E41. [PMID: 30920536 PMCID: PMC6318660 DOI: 10.3390/gels3040041] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 11/17/2022] Open
Abstract
Polyampholytes are a class of polymers made up of positively and negatively charged monomer subunits. Polyampholytes offer a unique tunable set of properties driven by the interactions between the charged monomer subunits. Some tunable properties of polyampholytes include mechanical properties, nonfouling characteristics, swelling due to changes in pH or salt concentration, and drug delivery capability. These characteristics lend themselves to multiple biomedical applications, and this review paper will summarize applications of polyampholyte polymers demonstrated over the last five years in tissue engineering, cryopreservation and drug delivery.
Collapse
Affiliation(s)
- Stephanie L Haag
- Department of Chemical & Materials Engineering, University of Idaho, Moscow, ID 83843, USA.
| | - Matthew T Bernards
- Department of Chemical & Materials Engineering, University of Idaho, Moscow, ID 83843, USA.
| |
Collapse
|
26
|
Liu Z, Xia Z, Fan L, Xiao H, Cao C. An ionic coordination hybrid hydrogel for bioseparation. Chem Commun (Camb) 2017; 53:5842-5845. [DOI: 10.1039/c7cc01923h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An ionic coordination hybrid hydrogel is formed with ionic and covalent crosslinked networks via one-step copolymation.
Collapse
Affiliation(s)
- Zhen Liu
- Laboratory of Bioseparation and Analytical Biochemistry
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Zhijun Xia
- Laboratory of Bioseparation and Analytical Biochemistry
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Liuyin Fan
- Laboratory of Bioseparation and Analytical Biochemistry
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Hua Xiao
- Laboratory of Bioseparation and Analytical Biochemistry
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Chengxi Cao
- Laboratory of Bioseparation and Analytical Biochemistry
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|