1
|
Dong X, Wang Z, Zhang P, Liu Y, Ji L, Wang Y, Zhou X, Ma K, Yu H. Substituent alkyl-chain-dependent supramolecular chirality, tunable chiroptical property, and dye adsorption in azobenzene-glutamide-amphiphile based hydrogel. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123018. [PMID: 37392534 DOI: 10.1016/j.saa.2023.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Controlling the supramolecular chirality of a self-assembly system by molecular structure design and external stimuli in aqueous solution is significant but challenging. Here, we design and synthesize several glutamide-azobenzene-based amphiphiles with different length alkyl chains. The amphiphiles can form self-assemblies in aqueous solution and show CD signals. As the number of the alkyl chain of amphiphiles increases, the CD signals of the assemblies can be enhanced. However, the long alkyl chains conversely restrict the isomerization of the azobenzene and the corresponding chiroptical property. Moreover, the alkyl length can determine the nanostructure of the assemblies and exert critical influence on the dye adsorption efficiency. This work exhibits some insights into the tunable chiroptical property of the self-assembly by delicate molecular design and external stimuli, and emphasizes the molecular structure can determine the corresponding application.
Collapse
Affiliation(s)
- Xuan Dong
- School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China; Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhixia Wang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Penghui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yiran Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Lukang Ji
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| | - Yuanyuan Wang
- Department of Pharmacology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xiaoqin Zhou
- School of Chemistry and Chemical Engineering Institute of Physical Chemistry, Lingnan Normal University, Development Centre for New Materials Engineering & Technology in Universities of Guangdong Zhanjiang 524048, PR China
| | - Kai Ma
- School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China.
| | - Haitao Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
2
|
Liu Y, Du M, Zhang P, Wang H, Dong X, Wang Z, Wang Y, Ji L. Host-guest interaction enabled chiroptical property, morphology transition, and phase switch in azobenzene-glutamide amphiphile based hydrogel. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
AlShetwi YA, Bessif B, Sommer M, Reiter G. Illumination of Conjugated Polymers Reduces the Nucleation Probability and Slows Down the Crystal Growth Rate. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaser A. AlShetwi
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
- National Centre for Nanotechnology and Semiconductors, Materials Science Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Brahim Bessif
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
| | - Michael Sommer
- Institute for Chemistry, Chemnitz University of Technology, Str. der Nationen 62, Chemnitz 09111, Germany
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, Stefan-Meier-Str. 21, Freiburg 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| |
Collapse
|
4
|
Wu Q, Zhang T, Li X, Tu X, Zhang H, Han J. Construction of pillar[5]arene-based photochromic supramolecular polymeric system with tunable thermal bleaching rate. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Fukushima T, Tamaki K, Isobe A, Hirose T, Shimizu N, Takagi H, Haruki R, Adachi SI, Hollamby MJ, Yagai S. Diarylethene-Powered Light-Induced Folding of Supramolecular Polymers. J Am Chem Soc 2021; 143:5845-5854. [PMID: 33755463 DOI: 10.1021/jacs.1c00592] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Helical folding of randomly coiled linear polymers is an essential organization process not only for biological polypeptides but also for synthetic functional polymers. Realization of this dynamic process in supramolecular polymers (SPs) is, however, a formidable challenge because of their inherent lability of main chains upon changing an external environment that can drive the folding process (e.g., solvent, concentration, and temperature). We herein report a photoinduced reversible folding/unfolding of rosette-based SPs driven by photoisomerization of a diarylethene (DAE). Temperature-controlled supramolecular polymerization of a barbiturate-functionalized DAE (open isomer) in nonpolar solvent results in the formation of intrinsically curved, but randomly coiled, SPs due to the presence of defects. Irradiation of the randomly coiled SPs with UV light causes efficient ring-closure reaction of the DAE moieties, which induces helical folding of the randomly coiled structures into helicoidal ones, as evidenced by atomic force microscopy and small-angle X-ray scattering. The helical folding is driven by internal structure ordering of the SP fiber that repairs the defects and interloop interaction occurring only for the resulting helicoidal structure. In contrast, direct supramolecular polymerization of the ring-closed DAE monomers by temperature control affords linearly extended ribbon-like SPs lacking intrinsic curvature that are thermodynamically less stable compared to the helicoidal SPs. The finding represents an important concept applicable to other SP systems; that is, postpolymerization (photo)reaction of preorganized kinetic structures can lead to more thermodynamically stable structures that are inaccessible directly through temperature-controlled protocols.
Collapse
Affiliation(s)
- Takuya Fukushima
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kenta Tamaki
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Atsushi Isobe
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Hideaki Takagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Martin J Hollamby
- School of Chemical and Physical Sciences, Keele University, Keele, U.K
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
6
|
Adelizzi B, Van Zee NJ, de Windt LNJ, Palmans ARA, Meijer EW. Future of Supramolecular Copolymers Unveiled by Reflecting on Covalent Copolymerization. J Am Chem Soc 2019; 141:6110-6121. [PMID: 30889358 DOI: 10.1021/jacs.9b01089] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Supramolecular copolymers are an emerging class of materials, and in the last years their potential has been demonstrated on a broad scale. Implementing noncovalent polymers with multiple components can bring together useful features such as dynamicity and new functionalities. However, mastering and tuning the microstructure of these systems is still an open challenge. In this Perspective, we aim to trace the general principles of supramolecular copolymerization by analyzing them through the lens of the well-established field of covalent copolymerization. Our goal is to delineate guidelines to classify and analyze supramolecular copolymers in order to create a fruitful platform to design and investigate new multicomponent systems.
Collapse
Affiliation(s)
| | - Nathan J Van Zee
- Chimie Moléculaire, Macromoléculaire, et Matériaux, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI)-CNRS, UMR-7167 , Paris Sciences et Lettres (PSL) Research University , 10 Rue Vauquelin , 75005 Paris , France
| | | | | | | |
Collapse
|
7
|
Jiang H, Jiang Y, Han J, Zhang L, Liu M. Helical Nanostructures: Chirality Transfer and a Photodriven Transformation from Superhelix to Nanokebab. Angew Chem Int Ed Engl 2019; 58:785-790. [DOI: 10.1002/anie.201811060] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/12/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Hejin Jiang
- National Laboratory for Molecular Science (BNLMS)CAS Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuqian Jiang
- Laboratory for Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Jianlei Han
- Laboratory for Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Li Zhang
- National Laboratory for Molecular Science (BNLMS)CAS Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Minghua Liu
- National Laboratory for Molecular Science (BNLMS)CAS Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- Laboratory for Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Collaborative Innovation Center of Chemical Science, and Engineering Tianjin 300072 China
| |
Collapse
|
8
|
Jiang H, Jiang Y, Han J, Zhang L, Liu M. Helical Nanostructures: Chirality Transfer and a Photodriven Transformation from Superhelix to Nanokebab. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hejin Jiang
- National Laboratory for Molecular Science (BNLMS)CAS Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuqian Jiang
- Laboratory for Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Jianlei Han
- Laboratory for Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Li Zhang
- National Laboratory for Molecular Science (BNLMS)CAS Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Minghua Liu
- National Laboratory for Molecular Science (BNLMS)CAS Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- Laboratory for Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Collaborative Innovation Center of Chemical Science, and Engineering Tianjin 300072 China
| |
Collapse
|