3
|
A Review on Novel Channel Materials for Particle Image Velocimetry Measurements-Usability of Hydrogels in Cardiovascular Applications. Gels 2022; 8:gels8080502. [PMID: 36005103 PMCID: PMC9407631 DOI: 10.3390/gels8080502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Particle image velocimetry (PIV) is an optical and contactless measurement method for analyzing fluid blood dynamics in cardiovascular research. The main challenge to visualization investigated in the current research was matching the channel material’s index of refraction (IOR) to that of the fluid. Silicone is typically used as a channel material for these applications, so optical matching cannot be proven. This review considers hydrogel as a new PIV channel material for IOR matching. The advantages of hydrogels are their optical and mechanical properties. Hydrogels swell more than 90 vol% when hydrated in an aqueous solution and have an elastic behavior. This paper aimed to review single, double, and triple networks and nanocomposite hydrogels with suitable optical and mechanical properties to be used as PIV channel material, with a focus on cardiovascular applications. The properties are summarized in seven hydrogel groups: PAMPS, PAA, PVA, PAAm, PEG and PEO, PSA, and PNIPA. The reliability of the optical properties is related to low IORs, which allow higher light transmission. On the other hand, elastic modulus, tensile/compressive stress, and nominal tensile/compressive strain are higher for multiple-cross-linked and nanocomposite hydrogels than single mono-cross-linked gels. This review describes methods for measuring optical and mechanical properties, e.g., refractometry and mechanical testing.
Collapse
|
4
|
Sun D, Lu T, Wang T. Nonlinear photoelasticity of rubber-like soft materials: comparison between theory and experiment. SOFT MATTER 2021; 17:4998-5005. [PMID: 33903872 DOI: 10.1039/d1sm00267h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoelasticity often refers to the birefringence effect of materials induced by elastic deformation. Recently, many experiments on the photoelasticity of soft materials have been reported. However, the experimental results are mainly qualitative observations and lack any theoretical analysis. In this paper, we revisit Treloar's and Arruda's models of nonlinear photoelasticity for rubber-like materials. Both models establish the intrinsic relationship between stretch and birefringence, based on the statistics of chain polarizability and a network theory. We discuss the difference of the two models and build an experimental setup to measure the birefringence of PDMS samples as a function of stress/stretch. We vary the curing ratio of PDMS to study the effect of chain density on birefringence and compare with Treloar's theory. We further use experimental data of double-network hydrogels in the literature to compare with theory and find that when the deformation is large compared with the limiting stretch of the material, Arruda's model fits the experimental data much better than Treloar's model. This work presents a basis of using the theory of nonlinear photoelasticity to guide the analysis of experiments.
Collapse
Affiliation(s)
- Danqi Sun
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tongqing Lu
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tiejun Wang
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
6
|
Shangwei L, Urakawa O, Inoue T. Rheo-Optical Study on the Viscoelastic Relaxation Modes of a Microgel Particle Suspension around the Liquid–Solid Transition Regime. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Shangwei
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Osamu Urakawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Tadashi Inoue
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
7
|
Sethi SK, Kadian S, Anubhav, Goel, Chauhan RP, Manik G. Fabrication and Analysis of ZnO Quantum Dots Based Easy Clean Coating: A Combined Theoretical and Experimental Investigation. ChemistrySelect 2020. [DOI: 10.1002/slct.202001092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sushanta K. Sethi
- Deptartment of Polymer and Process EngineeringIIT Roorkee Saharanpur Campus Saharanpur (UP) India First author corresponding author
| | - Sachin Kadian
- Deptartment of Polymer and Process EngineeringIIT Roorkee Saharanpur Campus Saharanpur (UP) India First author corresponding author
| | - Anubhav
- Deptartment of Polymer and Process EngineeringIIT Roorkee Saharanpur Campus Saharanpur (UP) India First author corresponding author
| | - Goel
- Deptartment of Polymer and Process EngineeringIIT Roorkee Saharanpur Campus Saharanpur (UP) India First author corresponding author
| | | | - Gaurav Manik
- Deptartment of Polymer and Process EngineeringIIT Roorkee Saharanpur Campus Saharanpur (UP) India First author corresponding author
| |
Collapse
|
9
|
Guan Y, Wang L, Cui L, Shen X, Gao W, Meng J, Li D, Shen C, Zhang Y, Hu G, Liang J. Preparation and rheological investigation of tough PAAm hydrogel by adding branched polyethyleneimine. J Appl Polym Sci 2019. [DOI: 10.1002/app.48541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yinyan Guan
- School of ScienceShenyang University of Technology Shenyang 110870 China
| | - Li Wang
- School of ScienceShenyang University of Technology Shenyang 110870 China
| | - Li Cui
- School of ScienceShenyang University of Technology Shenyang 110870 China
| | - Xinjun Shen
- School of ScienceShenyang University of Technology Shenyang 110870 China
| | - Weichun Gao
- School of ScienceShenyang University of Technology Shenyang 110870 China
| | - Jing Meng
- School of ScienceShenyang University of Technology Shenyang 110870 China
| | - Dan Li
- School of ScienceShenyang University of Technology Shenyang 110870 China
| | - Chenguang Shen
- School of ScienceShenyang University of Technology Shenyang 110870 China
| | - Yichen Zhang
- School of ScienceShenyang University of Technology Shenyang 110870 China
| | - Guodong Hu
- School of ScienceShenyang University of Technology Shenyang 110870 China
| | - Jiyan Liang
- School of ScienceShenyang University of Technology Shenyang 110870 China
| |
Collapse
|