1
|
Liang J, Ouyang X, Cao Y. Interfacial and confined molecular-assembly of poly(3-hexylthiophene) and its application in organic electronic devices. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:619-632. [PMID: 36212681 PMCID: PMC9542436 DOI: 10.1080/14686996.2022.2125826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Poly(3-hexylthiophene) (P3HT) is a typical conducting polymer widely used in organic thin-film transistors, polymer solar cells, etc., due to good processability and remarkable charging carrier and hole mobility. It is known that the ordered structure assembled by π-conjugated P3HT chains could promote the performance of electronic devices. Interfacial and confined molecular-assembly is one effective way to generate an ordered structure by tuning surface geometry and substrate interaction. Great efforts have been made to investigate the molecular chain assembly of P3HT on a curved surface that is confined to different geometry. In this report, we review the recent advances of the interfacial chain assembly of P3HT in a flat or curved confined space and its application to organic electronic devices. In principle, this interfacial assembly of P3HT at a nanoscale could improve the electronic properties, such as the current transport, power conversion efficiency, etc. Therefore, this review on interfacial and confined assembly of P3HT could give general implications for designing high-performance organic electronic devices.
Collapse
Affiliation(s)
- Junhao Liang
- Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Xing Ouyang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yan Cao
- Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangdong, China
| |
Collapse
|
2
|
Kubota C, Kashimoto M, Yamashita R, Okano K, Horie M, Funahashi M, Matsumoto T, Nishino T, Mori A. Studies on the properties of poly(3-alkylthiophene) copolymerized by a small amount of thiophene derivative bearing a cyclic siloxane moiety at the side chain. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chihiro Kubota
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Masaki Kashimoto
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryutaro Yamashita
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Masaki Horie
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Masahiro Funahashi
- Department of Advanced Materials Science, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Takuya Matsumoto
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takashi Nishino
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Suzuki Y, Asakawa N. Stochastic Resonance in Organic Electronic Devices. Polymers (Basel) 2022; 14:polym14040747. [PMID: 35215663 PMCID: PMC8878602 DOI: 10.3390/polym14040747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Stochastic Resonance (SR) is a phenomenon in which noise improves the performance of a system. With the addition of noise, a weak input signal to a nonlinear system, which may exceed its threshold, is transformed into an output signal. In the other words, noise-driven signal transfer is achieved. SR has been observed in nonlinear response systems, such as biological and artificial systems, and this review will focus mainly on examples of previous studies of mathematical models and experimental realization of SR using poly(hexylthiophene)-based organic field-effect transistors (OFETs). This phenomenon may contribute to signal processing with low energy consumption. However, the generation of SR requires a noise source. Therefore, the focus is on OFETs using materials such as organic materials with unstable electrical properties and critical elements due to unidirectional signal transmission, such as neural synapses. It has been reported that SR can be observed in OFETs by application of external noise. However, SR does not occur under conditions where the input signal exceeds the OFET threshold without external noise. Here, we present an example of a study that analyzes the behavior of SR in OFET systems and explain how SR can be made observable. At the same time, the role of internal noise in OFETs will be explained.
Collapse
|
4
|
Shibuya Y, Mori A. Dehalogenative or Deprotonative? The Preparation Pathway to the Organometallic Monomer for Transition-Metal-Catalyzed Catalyst-Transfer-Type Polymerization of Thiophene Derivatives. Chemistry 2020; 26:6976-6987. [PMID: 32086855 DOI: 10.1002/chem.201905653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 11/07/2022]
Abstract
Due to a wide range of applications in electronic materials, polythiophenes attract considerable attention in organic and polymer syntheses as well as in materials science. For the purpose of developing the practical synthetic protocol, this review focuses on the deprotonative pathway in the preparation of thiophene organometallic monomer, which was shown to be effective employing 2-halo-3-substituted thiophene as a monomer precursor. The thus metallated thiophene monomer was shown to undergo polymerization by nickel(II) complex catalysis, with which highly regioregular head-to-tail (HT)-type polythiophenes were obtained with controlled molecular weight and molecular weight distribution. Several polythiophene derivatives with modified thiophene-ring and side-chain structures were shown to be designed in order to achieve the designed functionality as materials.
Collapse
Affiliation(s)
- Yushin Shibuya
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai Nada, Kobe, 657-8501, Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai Nada, Kobe, 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai Nada, Kobe, 657-8501, Japan
| |
Collapse
|
5
|
Mori A, Fujita K, Kubota C, Suzuki T, Okano K, Matsumoto T, Nishino T, Horie M. Formal preparation of regioregular and alternating thiophene-thiophene copolymers bearing different substituents. Beilstein J Org Chem 2020; 16:317-324. [PMID: 32256849 PMCID: PMC7082695 DOI: 10.3762/bjoc.16.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
Differently substituted thiophene–thiophene-alternating copolymers were formally synthesized employing a halo-bithiophene as a monomer. Nickel-catalyzed polymerization of bithiophene with substituents at the 3-position, including alkyl-, fluoroalkyl-, or oligosiloxane-containing groups, afforded the corresponding copolymers in good to excellent yield. The solubility test in organic solvents was performed to reveal that several copolymers showed a superior solubility. X-ray diffraction analysis of the thin film of the alternating copolymers composed of methyl and branched oligosiloxane substituents was also performed, and the results suggested the formation of a dual-layered film structure.
Collapse
Affiliation(s)
- Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Keisuke Fujita
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chihiro Kubota
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Toyoko Suzuki
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takuya Matsumoto
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takashi Nishino
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Masaki Horie
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
6
|
Zhang L, Zhao K, Li H, Zhang T, Liu D, Han Y. Liquid Crystal Ordering on Conjugated Polymers Film Morphology for High Performance. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24885] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun People's Republic of China
- University of Science and Technology of China Hefei People's Republic of China
| | - Kefeng Zhao
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun People's Republic of China
- University of Science and Technology of China Hefei People's Republic of China
| | - Hongxiang Li
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun People's Republic of China
- University of Science and Technology of China Hefei People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun People's Republic of China
- University of Science and Technology of China Hefei People's Republic of China
| | - Duo Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun People's Republic of China
- University of Science and Technology of China Hefei People's Republic of China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun People's Republic of China
- University of Science and Technology of China Hefei People's Republic of China
| |
Collapse
|
7
|
Ogura T, Kubota C, Suzuki T, Okano K, Tanaka N, Matsumoto T, Nishino T, Mori A, Okita T, Funahashi M. Synthesis and Properties of Regioregular Polythiophene Bearing Cyclic Siloxane Moiety at the Side Chain and the Formation of Polysiloxane Gel by Acid Treatment of the Thin Film. CHEM LETT 2019. [DOI: 10.1246/cl.190139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tadayuki Ogura
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chihiro Kubota
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Toyoko Suzuki
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Norikazu Tanaka
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takuya Matsumoto
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takashi Nishino
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takumi Okita
- Department of Advanced Materials Science, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Masahiro Funahashi
- Department of Advanced Materials Science, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| |
Collapse
|
8
|
OGINO K, SEKI N, QIAN S, TANE S, HAYASHI K, KANEHASHI S. Synthesis and Characterization of Poly(3-hexylthiophene)- block-poly(styrene) Containing Perylene Diimide Moiety at Junction. KOBUNSHI RONBUNSHU 2019. [DOI: 10.1295/koron.2018-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kenji OGINO
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| | - Noritaka SEKI
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| | - Sicong QIAN
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| | - Shizuka TANE
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| | - Kazuya HAYASHI
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| | - Shinji KANEHASHI
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| |
Collapse
|