1
|
Burts K, Plisko T, Penkova A, Ermakov S, Bildyukevich A. Influence of PEG-PPG-PEG Block Copolymer Concentration and Coagulation Bath Temperature on the Structure Formation of Polyphenylsulfone Membranes. Polymers (Basel) 2024; 16:1349. [PMID: 38794542 PMCID: PMC11124811 DOI: 10.3390/polym16101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The effect of amphiphilic block copolymer polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG concentration in the polyphenylsulfone (PPSU) casting solution and coagulation bath temperature (CBT) on the structure, separation, and antifouling performance of PPSU ultrafiltration membranes was studied for the first time. According to the phase diagram obtained, PPSU/PEG-PPG-PEG/N-methyl-2-pyrrolidone (NMP) systems are characterized by a narrow miscibility gap. It was found that 20 wt.% PPSU solutions in NMP with the addition of 5-15 wt.% of PEG-PPG-PEG block copolymer feature upper critical solution temperature, gel point, and lower critical solution temperature. Membrane composition and structure were studied by Fourier-transform infrared spectroscopy, scanning electron and atomic force microscopies, and water contact angle measurements. The addition of PEG-PPG-PPG to the PPSU casting solution was found to increase the hydrophilicity of the membrane surface (water contact angle decreased from 78° for the reference PPSU membrane down to 50° for 20 wt.%PPSU/15 wt.% PEG-PPG-PEG membrane). It was revealed that the pure water flux increased with the rise of CBT from 18-20 L·m-2·h-1 for the reference PPSU membrane up to 38-140 L·m-2·h-1 for 20 wt.% PPSU/10-15 wt.% PEG-PPG-PEG membranes. However, the opposite trend was observed for 20 wt.% PPSU/5-7 wt.% PEG-PPG-PEG membranes: pure water flux decreased with an increase in CBT. This is due to the differences in the mechanism of phase separation (non-solvent-induced phase separation (NIPS) or a combination of NIPS and temperature-induced phase separation (TIPS)). It was shown that 20 wt.% PPSU/10 wt.% PEG-PPG-PEG membranes were characterized by significantly higher antifouling performance (FRR-81-89%, DRr-26-32%, DRir-10-20%, DT-33-45%) during the ultrafiltration of bovine serum albumin solutions compared to the reference PPSU membrane prepared at different CBTs (FRR-29-38%, DRr-6-14%, DRir-74-89%, DT-88-94%).
Collapse
Affiliation(s)
- Katsiaryna Burts
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Tatiana Plisko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Surganov Str., 13, 220072 Minsk, Belarus
| |
Collapse
|
2
|
Anokhina T, Raeva A, Sokolov S, Storchun A, Filatova M, Zhansitov A, Kurdanova Z, Shakhmurzova K, Khashirova S, Borisov I. Effect of Composition and Viscosity of Spinning Solution on Ultrafiltration Properties of Polyphenylene Sulfone Hollow-Fiber Membranes. MEMBRANES 2022; 12:1113. [PMID: 36363668 PMCID: PMC9697300 DOI: 10.3390/membranes12111113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/01/2023]
Abstract
In this work, PPSUs with different molecular weights were synthesized for the development of highly permeable ultrafiltration hollow fiber membranes for the first time. The MW of the synthesized polymers was controlled by varying the monomers molar ratio within 1:1-1.15 under the same synthesis conditions. Based on the study of the rheological properties of polymer solutions, a high molecular weight PPSU (MW 102,000 g/mol) was chosen for the formation of hollow fiber membranes. The addition of PEG400 to the spinning solution led to an increase in viscosity, which makes it possible to work in the region of lower PPSU concentrations (18-20 wt. %) and to form membranes with a less dense porous structure. With the addition of PEG400 to the spinning solution, the membrane permeance increased sharply by more than two orders of magnitude (from 0.2 to 96 L/m2 h bar). At the same time, the membranes had high rejection coefficients (99.9%) of Blue Dextran model filtered substance (MW = 69,000 g/mol).
Collapse
Affiliation(s)
- Tatyana Anokhina
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia
| | - Alisa Raeva
- Progressive Materials and Additive Technologies Center, Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Stepan Sokolov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia
| | - Alexandra Storchun
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia
| | - Marina Filatova
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia
| | - Azamat Zhansitov
- Progressive Materials and Additive Technologies Center, Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Zhanna Kurdanova
- Progressive Materials and Additive Technologies Center, Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Kamila Shakhmurzova
- Progressive Materials and Additive Technologies Center, Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Svetlana Khashirova
- Progressive Materials and Additive Technologies Center, Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Ilya Borisov
- Progressive Materials and Additive Technologies Center, Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| |
Collapse
|
3
|
Fine regulation on hour-glass like spongy structure of polyphenylsulfone (PPSU)/sulfonated polysulfone (SPSf) microfiltration membranes via a vapor-liquid induced phase separation (V-LIPS) technique. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
4
|
Development of High Flux Nanocomposite Polyphenylsulfone/Oxidized Multiwalled Carbon Nanotubes Membranes for Ultrafiltration Using the Systems with Critical Solution Temperatures. MEMBRANES 2022; 12:membranes12080724. [PMID: 35893442 PMCID: PMC9330833 DOI: 10.3390/membranes12080724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
The study deals with the investigation of the effect of the modification of polyphenylsulfone (PPSU) flat sheet membranes for ultrafiltration using oxidized multiwalled carbon nanotubes (O-MWCNT) in order to enhance membrane permeability and antifouling performance. The effect of O-MWCNT loading to the PPSU-polyethylene glycol (PEG-20,000, Mn = 20,000 g·mol−1)-polyvinylpyrrolidone (PVP K-30, Mn = 40,000 g·mol−1)-N-methy-2-pyrrolidinone (NMP) colloid systems on the phase state and viscosity was studied. It was found that PPSU-PEG-20,000-PVP K-30-O-MWCNT-NMP colloid systems feature a gel point (T = 35–37 °C) and demixing temperature (T = 127–129 °C) at which two bulk phases are formed and a polymer system delaminates. According to the study of the phase state and viscosity of these colloid systems, a method for the preparation of high flux PPSU membranes is proposed which includes processing of the casting solution at the temperature higher than gel point (40 °C) and using a coagulation bath temperature lower than gel point (25 °C) or lower than demixing temperature (40 °C and 70 °C). Membrane structure, topology and hydrophilic-hydrophobic balance were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurements. The effect of coagulation bath temperature and O-MWCNT concentration on the membrane separation and antifouling performance in ultrafiltration of human serum albumin and humic acids solutions was studied. It was found that the modification of PPSU ultrafiltration membranes by O-MWCNTs yielded the formation of a thinner selective layer and hydrophilization of the membrane surface (water contact angle decreased from 53–56° for the reference PPSU membrane down to 33° for the nanocomposite membrane with the addition of 0.19 wt.% O-MWCNT). These changes resulted in the increase in membrane flux (from 203–605 L·m−2·h−1 at transmembrane pressure of 0.1 MPa for the reference membrane up to 512–983 L·m−2·h−1 for nanocomposite membrane with the addition of 0.19 wt.% O-MWCNT depending on coagulation bath temperature) which significantly surpasses the performance of PPSU ultrafiltration membranes reported to date while maintaining a high level of human serum albumin rejection (83–92%). It was revealed that nanocomposite membrane demonstrated better antifouling performance (the flux recovery ratio increased from 47% for the reference PPSU membrane up to 62% for the nanocomposite membrane) and higher total organic carbon removal compared to the reference PPSU membrane in humic acids solution ultrafiltration.
Collapse
|
5
|
Shukla AK, Alam J, Alhoshan M. Recent Advancements in Polyphenylsulfone Membrane Modification Methods for Separation Applications. MEMBRANES 2022; 12:247. [PMID: 35207168 PMCID: PMC8876851 DOI: 10.3390/membranes12020247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Polyphenylsulfone (PPSU) membranes are of fundamental importance for many applications such as water treatment, gas separation, energy, electronics, and biomedicine, due to their low cost, controlled crystallinity, chemical, thermal, and mechanical stability. Numerous research studies have shown that modifying surface properties of PPSU membranes influences their stability and functionality. Therefore, the modification of the PPSU membrane surface is a pressing issue for both research and industrial communities. In this review, various surface modification methods and processes along with their mechanisms and performance are considered starting from 2002. There are three main approaches to the modification of PPSU membranes. The first one is bulk modifications, and it includes functional groups inclusion via sulfonation, amination, and chloromethylation. The second is blending with polymer (for instance, blending nanomaterials and biopolymers). Finally, the third one deals with physical and chemical surface modifications. Obviously, each method has its own limitations and advantages that are outlined below. Generally speaking, modified PPSU membranes demonstrate improved physical and chemical properties and enhanced performance. The advancements in PPSU modification have opened the door for the advance of membrane technology and multiple prospective applications.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mansour Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, P.O. Box 2022, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Ho CC, Su JF. Boosting permeation and separation characteristics of polyethersulfone ultrafiltration membranes by structure modification via dual-PVP pore formers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Pakizeh M, Azinfar F, Safarnia M, Raji F. The effects of TiO2 nanoparticles and polydopamine on the structure, separation, and antifouling properties of PPSU membrane. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.2006230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Majid Pakizeh
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Ferial Azinfar
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrnaz Safarnia
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Foad Raji
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Effect of Polyphenylsulfone and Polysulfone Incompatibility on the Structure and Performance of Blend Membranes for Ultrafiltration. MATERIALS 2021; 14:ma14195740. [PMID: 34640136 PMCID: PMC8510054 DOI: 10.3390/ma14195740] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022]
Abstract
This study deals with the modification of polyphenylsulfone ultrafiltration membranes by introduction of an incompatible polymer polysulfone to the polyphenylsulfone casting solution to improve the permeability. The correlation between properties of the blend polyphenylsulfone/polysulfone solutions and porous anisotropic membranes for ultrafiltration prepared from these solutions was revealed. The blend polyphenylsulfone/polysulfone solutions were investigated using a turbidity spectrum method, optical microscopy and measurements of dynamic viscosity and turbidity. The structure of the prepared blend flat sheet membranes was studied using scanning electron microscopy. Membrane separation performance was investigated in the process of ultrafiltration of human serum albumin buffered solutions. It was found that with the introduction of polysulfone to the polyphenylsulfone casting solution in N-methyl-2-pyrrolidone the size of supramolecular particles significantly increases with the maximum at (40–60):(60:40) polyphenylsulfone:polysulfone blend ratio from 76 nm to 196–354 nm. It was shown that polyphenylsulfone/polysulfone blend solutions, unlike the solutions of pristine polymers, are two-phase systems (emulsions) with the maximum droplet size and highest degree of polydispersity at polyphenylsulfone/polysulfone blend ratios (30–60):(70–40). Pure water flux of the blend membranes passes through a maximum in the region of the most heterogeneous structure of the casting solution, which is associated with the imposition of a polymer-polymer phase separation on the non-solvent induced phase separation upon membrane preparation. The application of polyphenylsulfone/polysulfone blends as membrane-forming polymers and polyethylene glycol (Mn = 400 g·mol−1) as a pore-forming agent to the casting solutions yields the formation of ultrafiltration membranes with high membrane pure water flux (270 L·m−2·h−1 at 0.1MPa) and human serum albumin rejection of 85%.
Collapse
|
9
|
Bai G, Xia J, Cao B, Zhang R, Meng J, Li P. Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2078-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Cui Z, Ding J, Zhu X, Li B, Zhang H, Zhang Y, Jiang Z. Nonlinear Optical Stability of Polyphenylsulfone (PPSU)‐Containing Anthraquinones with High Transmittance. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zengduo Cui
- Engineering Research Center of Super Engineering Plastics Ministry of Education College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jiale Ding
- Engineering Research Center of Super Engineering Plastics Ministry of Education College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Xuanbo Zhu
- Engineering Research Center of Super Engineering Plastics Ministry of Education College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Bolong Li
- Engineering Research Center of Super Engineering Plastics Ministry of Education College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Haibo Zhang
- Engineering Research Center of Super Engineering Plastics Ministry of Education College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yunhe Zhang
- Engineering Research Center of Super Engineering Plastics Ministry of Education College of Chemistry Jilin University Changchun 130012 P. R. China
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Zhenhua Jiang
- Engineering Research Center of Super Engineering Plastics Ministry of Education College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
11
|
Liu Z, Xiang J, Hu X, Cheng P, Zhang L, Du W, Wang S, Tang N. Effects of coagulation-bath conditions on polyphenylsulfone ultrafiltration membranes. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Liu L, Huang L, Shi M, Li W, Xing W. Amphiphilic PVDF‐
g
‐PDMAPMA ultrafiltration membrane with enhanced hydrophilicity and antifouling properties. J Appl Polym Sci 2019. [DOI: 10.1002/app.48049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lu Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| | - Lukuan Huang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| | - Manli Shi
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| | - Weixing Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| | - Weihong Xing
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| |
Collapse
|
13
|
Shi M, Liu L, Tong Y, Huang L, Li W, Xing W. Advanced porous polyphenylsulfone membrane with ultrahigh chemical stability and selectivity for vanadium flow batteries. J Appl Polym Sci 2019. [DOI: 10.1002/app.47752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Manli Shi
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Lu Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Yujia Tong
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Lukuan Huang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Weixing Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Weihong Xing
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| |
Collapse
|
14
|
Plisko TV, Bildyukevich AV, Karslyan YA, Ovcharova AA, Volkov VV. Development of high flux ultrafiltration polyphenylsulfone membranes applying the systems with upper and lower critical solution temperatures: Effect of polyethylene glycol molecular weight and coagulation bath temperature. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Eckardt M, Greb A, Simat TJ. Polyphenylsulfone (PPSU) for baby bottles: a comprehensive assessment on polymer-related non-intentionally added substances (NIAS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018. [DOI: 10.1080/19440049.2018.1449255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Martin Eckardt
- Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Annemarie Greb
- Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Thomas J. Simat
- Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|