1
|
Qiu Y, Wei X, Lam JWY, Qiu Z, Tang BZ. Chiral Nanostructures from Artificial Helical Polymers: Recent Advances in Synthesis, Regulation, and Functions. ACS NANO 2025. [PMID: 39754598 DOI: 10.1021/acsnano.4c14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). This review mainly focuses on the formation of chiral nanostructures and the morphology regulation triggered by polymer chain length, concentration, solvent, temperature, photoirradiation, and chemical additives. In addition, the distinct chiral functions including chiral recognition, circularly polarized luminescence, drug release, cell imaging, and antibiosis are also discussed.
Collapse
Affiliation(s)
- Yuan Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 230026, China
| | - Xilong Wei
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 230026, China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 230026, China
| |
Collapse
|
2
|
Zou H, Zhao S, Wu Q, Chu B, Zhou L. One-Pot Synthesis, Circularly Polarized Luminescence, and Controlled Self-Assembly of Janus-Type Miktoarm Star Copolymers. ACS Macro Lett 2024:227-233. [PMID: 38300520 DOI: 10.1021/acsmacrolett.3c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
With the aim of broadening the scope of Janus-type polymers with new functionalities, Janus-type miktoarm star copolymers comprising helical poly(phenyl isocyanide) (PPI) and a vinyl polymer were designed and synthesized via a combination of Pd(II)-initiated isocyanide polymerization and atom transfer radical polymerization (ATRP). A functional β-cyclodextrin bearing 7 Pd(II) complexes at one side and 14 bromine groups at the other side ((Pd(II))7-CD-(Br)14) was prepared and used as an initiator for the one-pot polymerization of phenyl isocyanide and the ATRP of vinyl monomers in a living and controlled manner. A variety of Janus-type copolymers with different structures and tunable compositions were facilely obtained by using this method. Thus, Janus-type copolymers composed of helical PPIs and tetraphenylethylene-modified vinyl polymers exhibited a significant circularly polarized luminescence performance in both soluble and aggregated states. Meanwhile, Janus-type copolymers containing PPIs and hydrophilic vinyl polymers presented amphiphilicity and self-assembled into diverse morphologies.
Collapse
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Shuyang Zhao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Qiliang Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, 23200 Anhui, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| |
Collapse
|
3
|
Yuan S, Zhao L, Wang F, Tan L, Wu D. Recent advances of optically active helical polymers as adsorbents and chiral stationary phases for chiral resolution. J Sep Sci 2023; 46:e2300363. [PMID: 37480172 DOI: 10.1002/jssc.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023]
Abstract
Chiral resolution is very important and still a big challenge due to different biological activity and same physicochemical property of one pair (R)- and (S)-isomer. There is no doubt that chiral selectors are essentially needed for chiral resolution, which can stereoselectively interact with a pair of isomers. To date, a large amount of optically active helical polymers as chiral selectors have been synthesized via two strategies. First, the target helical polymers are derived from natural polysaccharide such as cellulose and amylose. Second, they can be synthesized by polymerization of chiral monomers. Alternatively, an achiral polymer is prepared first followed by static or dynamic chiral induction. Furthermore, a part of them is harnessed as chiral stationary phases for chromatographic chiral separation and as chiral adsorbents for enantioselective adsorption/crystallization, resulting in good enantioseparation efficiency. In summary, the present review will focus on recent progress of the polymers with optical activity for chiral resolution, especially the literature published in the past 10 years. In addition, development prospects and future challenges of optically active helical polymers will be discussed in detail.
Collapse
Affiliation(s)
- Shuyi Yuan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Lei Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Abuaf M, Mastai Y. Electrospinning of polymer nanofibers based on chiral polymeric nanoparticles. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meir Abuaf
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan Israel
| | - Yitzhak Mastai
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan Israel
| |
Collapse
|
5
|
Zhong H, Deng J. Organic Polymer-Constructed Chiral Particles: Preparation and Chiral Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2033764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
6
|
Zhou C, Hou C, Chen W, Wang L, Cheng J. Progress of Application of Ring-Opening Metathesis Polymerization (ROMP) in the Synthesis of Star Polymers. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21100479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Liu N, Zhou L, Wu ZQ. Alkyne-Palladium(II)-Catalyzed Living Polymerization of Isocyanides: An Exploration of Diverse Structures and Functions. Acc Chem Res 2021; 54:3953-3967. [PMID: 34601864 DOI: 10.1021/acs.accounts.1c00489] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inspired by the perfect helical structures and the resulting exquisite functions of biomacromolecules, helical polymers have attracted increasing attention in recent years. Polyisocyanide is well known for its distinctive rodlike helical structure and various applications in chiral recognition, enantiomer separation, circularly polarized luminescence, liquid crystallization, and other fields. Although various methods and catalysts for isocyanide polymerization have been reported, the precise synthesis of helical polyisocyanides with controlled molecular weight, low dispersity, and high tacticity remains a formidable challenge. Owing to a limited synthesis strategy, the controlled synthesis of topological polyisocyanides has barely been realized. This Accounts highlights our recent endeavors to explore novel catalysts for the living polymerization of isocyanides. Fortunately, we discovered that alkyne-Pd(II) catalysts could initiate the living polymerization of isocyanides, resulting in helical polyisocyanides with controlled structures, high tacticity, and tunable compositions. These catalysts are applicable to various isocyanide monomers, including alkyl isocyanides, aryl isocyanides, and diisocyanobenzene derivatives. Incorporating chiral bidentate phosphine ligands onto alkyne-Pd(II) complexes formed chiral Pd(II) catalysts, which promoted the asymmetric living polymerization of achiral isocyanide, yielding single left- and right-handed helices with highly optical activities.Using alkyne-Pd(II) catalysts, various topological polyisocyanides have been facilely prepared, including hybrid block copolymers, bottlebrush polymers, core cross-linked star polymers, and organic/inorganic nanoparticles. For instance, various hybrid block polyisocyanides were easily produced by coupling alkyne-Pd(II)-catalyzed living isocyanide polymerization with controlled radical polymerization and ring-opening polymerization (ROP). Combining the ring-opening metathesis polymerization (ROMP) of norbornene with Pd(II)-catalyzed isocyanide polymerization, bottlebrush polyisocyanides and core cross-linked star polymers were easily prepared. Pd(II)-catalyzed living polymerization of poly(lactic acid)s with isocyanide termini resulted in densely grafted bottlebrush polyisocyanides with closely packed side chains. Moreover, the surface-initiated living polymerization of isocyanides produced a family of polyisocyanide-grafted organic/inorganic hybrid nanoparticles using nanoparticles with alkyne-Pd(II) catalysts anchored on the surfaces. Surprisingly, the nanoparticles and star polymers with helical polyisocyanide arms performed exceptionally well in terms of chiral recognition and resolution. Incorporated organocatalysts such as proline and prolinol units onto the pendants of optically active helical polyisocyanides, a family of polymer-based chiral organocatalysts, were generated, which showed significantly improved stereoselectivity for the asymmetric Aldol reaction and Michael addition and can be easily recycled.Using a chiral alkyne-Pd(II) catalyst, single-handed helical polyisocyanides bearing naphthalene and pyrene probes were produced from achiral isocyanide monomers. These polymers showed excellent self-sorting properties as revealed using a fluorescence resonance energy transfer (FRET) investigation and were self-assembled into two-dimensional (2D) smectic nanostructures driven by both helicity and chain length. Incorporating helical poly(phenyl isocyanide) (PPI) onto semiconducting poly(3-hexylthiophene) (P3HT) induced the asymmetric assembly of the resulting P3HT-b-PPI copolymers into single-handed cylindrical micelles with controlled dimensions and tunable photoluminescence.
Collapse
Affiliation(s)
- Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
8
|
Shen X, Huang H, Qian H, Tang L, Zhang Y, Xu M, Wang H, Wang Z. Super Chirality Promotion of Helical Poly(Phenyl Isocyanide)s by Grafting onto Ethyl Cellulose. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaofei Shen
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Hailong Huang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science East China Normal University Shanghai 200062 P. R. China
| | - Hao Qian
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Longxiang Tang
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Yan Zhang
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Min Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science East China Normal University Shanghai 200062 P. R. China
| | - Huiqing Wang
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Department of Material Science and Engineering Anhui Agricultural University Hefei Anhui 230036 P. R. China
| |
Collapse
|
9
|
Xu M, Kooij B, Wang T, Lin JH, Qu ZW, Grimme S, Stephan DW. Facile Synthesis of Cyanide and Isocyanides from CO. Angew Chem Int Ed Engl 2021; 60:16965-16969. [PMID: 34004079 DOI: 10.1002/anie.202105909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 11/09/2022]
Abstract
The reaction of K[N(SiMe3 )2 ] with 13 CO proceeds in C6 D6 or THF affording K13 CN and O(SiMe3 )2 under mild conditions as confirmed by crystallographic characterization of K(18-crown-6)CN. Similarly reaction of the alkali metal amides, M[N(SiR3 )R'] (M=Li, K; R=Ph, Me; R'=alkyl, aryl) provides the corresponding 13 C labeled isocyanide RN13 C and MOSiR3 , generally in high yields. In some instances, the use of the sterically bulky Ph3 Si-substituent is required to preclude 1,2-silyl migration affording the silylcarbamoyl salt M[Me3 SiC(O)NR']. These reactions have been used to obtain 19 examples of 13 C labelled isocyanides, and several examples of gram scale reactions are reported. The mechanism of the reactions is probed via reliable DFT calculations.
Collapse
Affiliation(s)
- Maotong Xu
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S3H6, Canada
| | - Bastiaan Kooij
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S3H6, Canada.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1090 GD, Amsterdam, The Netherlands
| | - Tongtong Wang
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S3H6, Canada.,School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116023, China
| | - Jack H Lin
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S3H6, Canada
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Douglas W Stephan
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S3H6, Canada
| |
Collapse
|
10
|
Chiral Recognition and Resolution Based on Helical Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2615-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Xu M, Kooij B, Wang T, Lin JH, Qu Z, Grimme S, Stephan DW. Facile Synthesis of Cyanide and Isocyanides from CO. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maotong Xu
- Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S3H6 Canada
| | - Bastiaan Kooij
- Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S3H6 Canada
- Van't Hoff Institute for Molecular Sciences University of Amsterdam 1090 GD Amsterdam The Netherlands
| | - Tongtong Wang
- Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S3H6 Canada
- School of Chemistry Faculty of Chemical Environmental and Biological Science and Technology Dalian University of Technology Dalian 116023 China
| | - Jack H. Lin
- Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S3H6 Canada
| | - Zheng‐Wang Qu
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Beringstrasse 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Beringstrasse 4 53115 Bonn Germany
| | - Douglas W. Stephan
- Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S3H6 Canada
| |
Collapse
|
12
|
Abuaf M, Mastai Y. Synthesis of Multi Amino Acid Chiral Polymeric Microparticles for Enantioselective Chemistry. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Meir Abuaf
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan 52900 Israel
| | - Yitzhak Mastai
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan 52900 Israel
| |
Collapse
|
13
|
Ma Y, Shi L, Yue H, Gao X. Recognition at chiral interfaces: From molecules to cells. Colloids Surf B Biointerfaces 2020; 195:111268. [DOI: 10.1016/j.colsurfb.2020.111268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023]
|
14
|
Song L, Pan M, Zhao R, Deng J, Wu Y. Recent advances, challenges and perspectives in enantioselective release. J Control Release 2020; 324:156-171. [DOI: 10.1016/j.jconrel.2020.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
|
15
|
Yang J, Li P, Zhao B, Pan K, Deng J. Electrospinning chiral fluorescent nanofibers from helical polyacetylene: preparation and enantioselective recognition ability. NANOSCALE ADVANCES 2020; 2:1301-1308. [PMID: 36133051 PMCID: PMC9418719 DOI: 10.1039/d0na00127a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/20/2020] [Indexed: 05/12/2023]
Abstract
Chirality is ubiquitous in nature and closely related to the pharmacological effects of chiral drugs. Therefore, chiral recognition of molecular enantiomers becomes an important research theme. Fluorescence detection is highly sensitive and fast but has achieved only limited success in enantiomeric detection due to the lack of powerful chiral fluorescence detection materials. In this paper, a novel chiral fluorescent probe material, i.e. a chiral fluorescent nanofiber membrane, is prepared from chiral helical substituted polyacetylene by the electrospinning technique. The SEM images demonstrate the success in fabricating continuous, uniform nanofibers with a diameter of about 100 nm. Circular dichroism spectra show that the nanofibers exhibit fascinating optical activity. One of the enantiomeric chiral fluorescent membranes has chiral fluorescence recognition effects towards alanine and chiral phenylethylamine, while the other enantiomeric membrane does not. The prepared chiral fluorescent nano-materials are expected to find various applications in chirality-related fields due to their advantages such as chirality, fluorescence, and a high specific surface area. The established preparation approach also promises a potent and versatile platform for developing advanced nanofiber materials from conjugated polymers.
Collapse
Affiliation(s)
- Jiali Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Pengpeng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Biao Zhao
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Kai Pan
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
16
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Glycyrrhizic acid based self-assembled helical nanostructures as scaffolds for asymmetric Diels-Alder reaction. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Raza S, Yong X, Deng J. Optically Active Biobased Hollow Polymer Particles: Preparation, Chiralization, and Adsorption toward Chiral Amines. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Saleem Raza
- State Key Laboratory of Chemical Resource Engineering; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beisanhuan East Road 15#, Beijing 100029, China
| | - Xueyong Yong
- State Key Laboratory of Chemical Resource Engineering; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beisanhuan East Road 15#, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beisanhuan East Road 15#, Beijing 100029, China
| |
Collapse
|
19
|
Wang H, Yong X, Huang H, Yu H, Wu Y, Deng J. Chiral, thermal-responsive hydrogels containing helical hydrophilic polyacetylene: preparation and enantio-differentiating release ability. Polym Chem 2019. [DOI: 10.1039/c8py01759j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chiral hydrogels constructed from helical hydrophilic polyacetylene demonstrate chirality, thermo-responsivity, biocompatibility and enantio-selective release ability towards chiral drugs.
Collapse
Affiliation(s)
- Huilei Wang
- State Key Laboratory of Organic Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xueyong Yong
- State Key Laboratory of Organic Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Huajun Huang
- State Key Laboratory of Chemical Resource Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Huli Yu
- State Key Laboratory of Chemical Resource Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Youping Wu
- State Key Laboratory of Organic Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|