1
|
Wojciechowski C, Wasyłeczko M, Lewińska D, Chwojnowski A. A Comprehensive Review of Hollow-Fiber Membrane Fabrication Methods across Biomedical, Biotechnological, and Environmental Domains. Molecules 2024; 29:2637. [PMID: 38893513 PMCID: PMC11174095 DOI: 10.3390/molecules29112637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
This work presents methods of obtaining polymeric hollow-fiber membranes produced via the dry-wet phase inversion method that were published in renowned specialized membrane publications in the years 2010-2020. Obtaining hollow-fiber membranes, unlike flat membranes, requires the use of a special installation for their production, the most important component of which is the hollow fiber forming spinneret. This method is most often used in obtaining membranes made of polysulfone, polyethersulfone, polyurethane, cellulose acetate, and its derivatives. Many factors affect the properties of the membranes obtained. By changing the parameters of the spinning process, we change the thickness of the membranes' walls and the diameter of the hollow fibers, which causes changes in the membranes' structure and, as a consequence, changes in their transport/separation parameters. The type of bore fluid affects the porosity of the inner epidermal layer or causes its atrophy. Porogenic compounds such as polyvinylpyrrolidones and polyethylene glycols and other substances that additionally increase the membrane porosity are often added to the polymer solution. Another example is a blend of two- or multi-component membranes and dual-layer membranes that are obtained using a three-nozzle spinneret. In dual-layer membranes, one layer is the membrane scaffolding, and the other is the separation layer. Also, the temperature during the process, the humidity, and the composition of the solution in the coagulating bath have impact on the parameters of the membranes obtained.
Collapse
Affiliation(s)
- Cezary Wojciechowski
- Nalecz Institute of Biocybernetic and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Str., 02-109 Warsaw, Poland; (M.W.); (D.L.); (A.C.)
| | | | | | | |
Collapse
|
2
|
Pan X, Pan J, Li Z, Gai W, Dong G, Huang M, Huang L. Preparation of N-MG-modified PVDF-CTFE substrate composite nanofiltration membrane and its selective separation of salt and dye. RSC Adv 2024; 14:11992-12008. [PMID: 38638887 PMCID: PMC11024597 DOI: 10.1039/d4ra00359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) is considered an ideal membrane material for the treatment of complex environmental water due to its exceptional thermal stability and chemical resistance. Thus, to expand its application in the field of nanofiltration (NF) membranes, in this study, N-methylglucamine (N-MG) was used to hydrophilically modify PVDF-CTFE, overcoming the inherent hydrophobicity of PVDF-CTFE as a porous substrate membrane, which leads to difficulties in controlling the interfacial polymerization (IP) reaction and instability of the separation layer structure. The -OH present in N-MG could replace the C-Cl bond in the CTFE chain segment, thus enabling the hydrophilic graft modification of PVDF-CTFE. The influence of the addition of N-MG on the surface and pore structure, wettability, permeability, ultrafiltration separation, and mechanical properties of the PVDF-CTFE substrate membrane was studied. According to the comparison of the comprehensive capabilities of the prepared porous membranes, the M4 membrane with the addition of 1.5 wt% N-MG exhibited the best hydrophilicity and permeability, indicating that it is a desirable modified membrane for use as an NF substrate membrane. The experiments showed that the rejection of Na2SO4 by the NF membrane was 96.5% and greater than 94.0% for various dyes. In the test using dye/salt mixed solution, this membrane exhibited a good separation selectivity (CR/NaCl = 177.8) and long-term operational stability.
Collapse
Affiliation(s)
- Xinyu Pan
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Jian Pan
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Zhuoqun Li
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Wenqiang Gai
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Guangshun Dong
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Min Huang
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Lilan Huang
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| |
Collapse
|
3
|
Zhu J, Yang M, Hu Y, Yao M, Chen J, Niu Z. The Construction of Binary Phase Electrolyte Interface for Highly Stable Zinc Anodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304426. [PMID: 37555530 DOI: 10.1002/adma.202304426] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Metal zinc is a promising anode candidate of aqueous zinc-ion batteries due to high theoretical capacity, low cost, and high safety. However, it often suffers from hydrogen evolution reaction (HER), dendrite growth, and formation of by-products. Herein, a triethyl phosphate (TEP)/H2 O binary phase electrolyte (BPE) interface is developed by introducing TEP-based electrolyte-wetted hydrophobic polypropylene (PP) separator onto the Zn anode surface. The equilibrium of the BPE interface depends on the comparable surface tensions of H2 O-based and TEP-based electrolytes on hydrophobic PP separator surfaces. The BPE interface induces Zn2+ solvation structure conversion from [Zn(H2 O)x ]2+ to [Zn(TEP)n (H2 O)y ]2+ , where most solvated H2 O molecules are removed. In [Zn(TEP)n (H2 O)y ]2+ , the residual H2 O molecules can be further constrained by the formation of H bonds between TEP and H2 O molecules. Consequently, the ionization of solvated H2 O molecules is effectively suppressed, and HER and by-products are effectively restricted on Zn anode surfaces in BPE. As a result, Zn anodes exhibit a high Coulombic efficiency of 99.12% and superior cycling performance of 6000 h, which is much higher than the case in single-phase aqueous electrolytes. To illustrate the feasibility of BPE in full cells, the Zn/Alx V2 O5 batteries are assembled based on the BPE and exhibited enhanced cycling performance.
Collapse
Affiliation(s)
- Jiacai Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Min Yang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Hu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Minjie Yao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
4
|
Gu J, Xu S, Lu X, Ma R, Zhang S, Zheng S, Wang H, Shen H. Study on the membrane formation mechanism of PVDF/PVDF-CTFE blends. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Ren W, Pan J, Gai W, Pan X, Chen H, Li J, Huang L. Fabrication and characterization of PVDF-CTFE/SiO2 electrospun nanofibrous membranes with micro and nano-rough structures for efficient oil-water separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Kawashima K, Shirzadi M, Fukasawa T, Fukui K, Tsuru T, Ishigami T. Numerical modeling for particulate flow through realistic microporous structure of microfiltration membrane: Direct numerical simulation coordinated with focused ion beam scanning electron microscopy. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Ma W, Pan J, Ren W, Chen L, Huang L, Xu S, Jiang Z. Fabrication of antibacterial and self-cleaning CuxP@g-C3N4/PVDF-CTFE mixed matrix membranes with enhanced properties for efficient ultrafiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
|
9
|
Nazif A, Karkhanechi H, Saljoughi E, Mousavi SM, Matsuyama H. Effective Parameters on Fabrication and Modification of Braid Hollow Fiber Membranes: A Review. MEMBRANES 2021; 11:884. [PMID: 34832113 PMCID: PMC8619145 DOI: 10.3390/membranes11110884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/05/2022]
Abstract
Hollow fiber membranes (HFMs) possess desired properties such as high surface area, desirable filtration efficiency, high packing density relative to other configurations. Nevertheless, they are often possible to break or damage during the high-pressure cleaning and aeration process. Recently, using the braid reinforcing as support is recommended to improve the mechanical strength of HFMs. The braid hollow fiber membrane (BHFM) is capable apply under higher pressure conditions. This review investigates the fabrication parameters and the methods for the improvement of BHFM performance.
Collapse
Affiliation(s)
- Azadeh Nazif
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (A.N.); (E.S.); (S.M.M.)
| | - Hamed Karkhanechi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (A.N.); (E.S.); (S.M.M.)
| | - Ehsan Saljoughi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (A.N.); (E.S.); (S.M.M.)
| | - Seyed Mahmoud Mousavi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (A.N.); (E.S.); (S.M.M.)
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
10
|
Moattari RM, Mohammadi T, Rajabzadeh S, Dabiryan H, Matsuyama H. Reinforced hollow fiber membranes: A comprehensive review. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Dong X, Lu D, Harris TAL, Escobar IC. Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development. MEMBRANES 2021; 11:309. [PMID: 33922560 PMCID: PMC8146349 DOI: 10.3390/membranes11050309] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/04/2023]
Abstract
(1) Different methods have been applied to fabricate polymeric membranes with non-solvent induced phase separation (NIPS) being one of the mostly widely used. In NIPS, a solvent or solvent blend is required to dissolve a polymer or polymer blend. N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF) and other petroleum-derived solvents are commonly used to dissolve some petroleum-based polymers. However, these components may have negative impacts on the environment and human health. Therefore, using greener and less toxic components is of great interest for increasing membrane fabrication sustainability. The chemical structure of membranes is not affected by the use of different solvents, polymers, or by the differences in fabrication scale. On the other hand, membrane pore structures and surface roughness can change due to differences in diffusion rates associated with different solvents/co-solvents diffusing into the non-solvent and with differences in evaporation time. (2) Therefore, in this review, solvents and polymers involved in the manufacturing process of membranes are proposed to be replaced by greener/less toxic alternatives. The methods and feasibility of scaling up green polymeric membrane manufacturing are also examined.
Collapse
Affiliation(s)
- Xiaobo Dong
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA; (X.D.); (D.L.)
| | - David Lu
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA; (X.D.); (D.L.)
| | - Tequila A. L. Harris
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Isabel C. Escobar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA; (X.D.); (D.L.)
| |
Collapse
|
12
|
Ma R, Lu X, Kong X, Zheng S, Zhang S, Liu S. A method of controllable positive-charged modification of PVDF-CTFE membrane surface based on C–Cl active site. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Facile preparation of persistently hydrophilic poly(vinylidene fluoride-co-trifluorochloroethylene) membrane based on in-situ substitution reaction. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Simultaneous extraction and recovery of gold(I) from alkaline solutions using an environmentally benign polymer inclusion membrane with ionic liquid as the carrier. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Fabrication of organic solvent nanofiltration membranes via facile bioinspired one-step modification. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|