Xie S, Li Y, Chai Y, Chen Q, North M, Xie H. Introducing the Reversible Reaction of CO
2 with Diamines into Nonisocyanate Polyurethane Synthesis.
ACS Macro Lett 2024;
13:14-20. [PMID:
38091470 DOI:
10.1021/acsmacrolett.3c00621]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Nonisocyanate polyurethanes (NIPUs) are considered greener alternatives to traditional polyurethanes, and the preparation of NIPUs considerably depends on the design and synthesis of suitable monomers. Herein, we propose a toolbox for in situ capturing and conversion of CO2 into α,ω-diene-functionalized carbamate monomers by taking advantage of the facile reversible reaction of CO2 with diamines in the presence of organic superbases. The activation of CO2 into carbamate intermedia was demonstrated by NMR and in situ FTIR, and the optimal conditions to prepare α,ω-diene-functionalized carbamate monomers were established. Thiol-ene and acyclic diene metathesis (ADMET) polymerization of these monomers under mild conditions yielded a series of poly(thioether urethane)s and unsaturated aromatic-aliphatic polyurethanes with high yield and glass transition temperatures ranging from -26.8 to -1.1 °C. These obtained NIPUs could be further modified via postpolymerization oxidation or hydrogenation to yield poly(sulfone urethane) and saturated polyurethane with tunable properties.
Collapse