1
|
Li Y, Liu S, Feng F, Li Y, Han Y, Tong X, Gao X. Preparation and Characterization of Graphene Oxide/Carbon Nanotube/Polyaniline Composite and Conductive and Anticorrosive Properties of Its Waterborne Epoxy Composite Coatings. Polymers (Basel) 2024; 16:2641. [PMID: 39339105 PMCID: PMC11435755 DOI: 10.3390/polym16182641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The organic coating on the surface is common and the most effective method to prevent metal materials from corrosion. However, the corrosive medium can penetrate the metal surface via micropores, and electrons cannot transfer in the pure resin coatings. In this paper, a new type of anticorrosive and electrically conductive composite coating filled with graphene oxide/carbon nanotube/polyaniline (GO/CNT/PANI) nanocomposites was successfully prepared by in situ polymerization of aniline (AN) on the surface of GO and CNT and using waterborne epoxy resin (WEP) as film-forming material. The structure and morphology of the composite were characterized using a series of characterization methods. The composite coatings were comparatively examined through resistivity, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and salt spray tests. The results show that the GO/CNT/PANI/WEP composite coating exhibits excellent corrosion resistance for metal substrates and good conductivity when the mass fraction of GO/CNT/PANI is 3.5%. It exhibits a lower corrosion current density of 4.53 × 10-8 A·cm-2 and a higher electrochemical impedance of 3.84 × 106 Ω·cm2, while only slight corrosion occurred after 480 h in the salt spray test. The resistivity of composite coating is as low as 2.3 × 104 Ω·cm. The composite coating possesses anticorrosive and electrically conductive properties based on the synergistic effect of nanofillers and expands the application scope in grounding grids and oil storage tank protection fields.
Collapse
Affiliation(s)
- Yufeng Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Shibo Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Feng Feng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Yahui Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Xinyang Tong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Xiaohui Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| |
Collapse
|
2
|
Mohd Nurazzi N, Asyraf M, Khalina A, Abdullah N, Sabaruddin FA, Kamarudin SH, Ahmad S, Mahat AM, Lee CL, Aisyah HA, Norrrahim MNF, Ilyas RA, Harussani MM, Ishak MR, Sapuan SM. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers (Basel) 2021; 13:1047. [PMID: 33810584 PMCID: PMC8037012 DOI: 10.3390/polym13071047] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023] Open
Abstract
A novel class of carbon nanotube (CNT)-based nanomaterials has been surging since 1991 due to their noticeable mechanical and electrical properties, as well as their good electron transport properties. This is evidence that the development of CNT-reinforced polymer composites could contribute in expanding many areas of use, from energy-related devices to structural components. As a promising material with a wide range of applications, their poor solubility in aqueous and organic solvents has hindered the utilizations of CNTs. The current state of research in CNTs-both single-wall carbon nanotubes (SWCNT) and multiwalled carbon nanotube (MWCNT)-reinforced polymer composites-was reviewed in the context of the presently employed covalent and non-covalent functionalization. As such, this overview intends to provide a critical assessment of a surging class of composite materials and unveil the successful development associated with CNT-incorporated polymer composites. The mechanisms related to the mechanical, thermal, and electrical performance of CNT-reinforced polymer composites is also discussed. It is vital to understand how the addition of CNTs in a polymer composite alters the microstructure at the micro- and nano-scale, as well as how these modifications influence overall structural behavior, not only in its as fabricated form but also its functionalization techniques. The technological superiority gained with CNT addition to polymer composites may be advantageous, but scientific values are here to be critically explored for reliable, sustainable, and structural reliability in different industrial needs.
Collapse
Affiliation(s)
- Norizan Mohd Nurazzi
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - M.R.M. Asyraf
- Department of Aerospace Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
| | - Abdan Khalina
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
| | - Norli Abdullah
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Fatimah Athiyah Sabaruddin
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
- School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Siti Hasnah Kamarudin
- School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor 40450, Malaysia; (S.H.K.); (S.A.)
| | - So’bah Ahmad
- School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor 40450, Malaysia; (S.H.K.); (S.A.)
| | - Annie Maria Mahat
- Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia;
| | - Chuan Li Lee
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
| | - H. A. Aisyah
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
| | - Mohd Nor Faiz Norrrahim
- Research Center for Chemical Defence, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana, Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor 81310, Malaysia;
| | - M. M. Harussani
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
| | - M. R. Ishak
- Department of Aerospace Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
| | - S. M. Sapuan
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), UPM Serdang, Selangor 43400, Malaysia; (F.A.S.); (C.L.L.); (H.A.A.); (M.M.H.); (S.M.S.)
| |
Collapse
|