1
|
Rapid RAFT Polymerization of Acrylamide with High Conversion. Molecules 2023; 28:molecules28062588. [PMID: 36985559 PMCID: PMC10057598 DOI: 10.3390/molecules28062588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Rapid RAFT polymerization can significantly improve production efficiency of PAM with designed molecular structure. This study shows that ideal Reversible Addition–Fragmentation Chain Transfer (RAFT) polymerization of acrylamide is achieved in dimethyl sulfoxide (DMSO) solution at 70 °C. The key to success is the appropriate choice of both a suitable RAFT chain transfer agent (CTA) and initiating species. It is illustrated that dodecyl trithiodimethyl propionic acid (DMPA) is a suitable trithiocarbonate RAFT CTA and is synthesized more easily than other CTAs. Compared to other RAFT processes of polymers, the reaction system shortens reaction time, enhances conversion, and bears all the characteristics of a controlled radical polymerization. The calculation result shows that high concentrations can reduce high conversions, accelerate the reaction rate, and widen molecular weight distributions slightly. This work proposes an excellent approach for rapid synthesis of PAMs with a restricted molecular weight distribution.
Collapse
|
2
|
Gubarev AS, Lezov AA, Mikusheva NG, Perevyazko I, Senchukova AS, Lezova AA, Podsevalnikova AN, Rogozhin VB, Enke M, Winter A, Schubert US, Tsvetkov NV. Hydrodynamic Characteristics and Conformational Parameters of Ferrocene-Terpyridine-Based Polymers. Polymers (Basel) 2022; 14:polym14091776. [PMID: 35566943 PMCID: PMC9104623 DOI: 10.3390/polym14091776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Nowadays, the study of metallopolymers is one of the fastest growing areas of polymer science. Metallopolymers have great potential for application in multiple technological and various biomedical processes. The macromolecules with the possibility of varying the number and type of metal ions along the entire length of the polymer chain are of particular interest. In this regard, this study presents results on two successfully synthesized homopolymers, random and block copolymers based on PMMA, containing ferrocene and terpyridine moieties in the side chain. Different architectures of copolymers may attribute interesting properties when creating complexes with various metal ions. A detailed hydrodynamic study of these structures was carried out, the consistency of hydrodynamic data was established using the concept of a hydrodynamic invariant, the absolute values of the molar masses of the studied objects were calculated, and the conformational parameters of macromolecules were determined. Using the Fixman-Stockmayer theory, the equilibrium rigidities of the studied systems were calculated and the relationship between the chemical structure and conformational characteristics was established. The studied copolymers can be attributed to the class of flexible-chain macromolecules. An increase in the equilibrium rigidity value with an increase of the side chain, which is characteristic of comb-shaped polymers, was determined.
Collapse
Affiliation(s)
- Alexander S. Gubarev
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Alexey A. Lezov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Nina G. Mikusheva
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Igor Perevyazko
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Anna S. Senchukova
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Alexandra A. Lezova
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Anna N. Podsevalnikova
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Vyacheslav B. Rogozhin
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Marcel Enke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; (M.E.); (A.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; (M.E.); (A.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; (M.E.); (A.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Correspondence: (U.S.S.); (N.V.T.)
| | - Nikolai V. Tsvetkov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
- Correspondence: (U.S.S.); (N.V.T.)
| |
Collapse
|
3
|
Zhang H, Zhou Z, Chen X, Yu B, Luo Z, Li X, Rahman MA, Sha Y. Sequence-Controlled Metallopolymers: Synthesis and Properties. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hao Zhang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhou Zhou
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofan Chen
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Yu
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenyang Luo
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Md Anisur Rahman
- Chemical Science Division, Oak Ridge National LaboratoryOak Ridge, Tennessee 37831-2008, United States
| | - Ye Sha
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Cha Y, Zhu T, Sha Y, Lin H, Hwang J, Seraydarian M, Craig SL, Tang C. Mechanochemistry of Cationic Cobaltocenium Mechanophore. J Am Chem Soc 2021; 143:11871-11878. [PMID: 34283587 DOI: 10.1021/jacs.1c05233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent research on the mechanochemistry of metallocene mechanophores has shed light on the force-responsiveness of these thermally and chemically stable organometallic compounds. In this work, we report a combination of experimental and computational studies on the mechanochemistry of main-chain cobaltocenium-containing polymers. Ester derivatives of the cationic cobaltocenium, though isoelectronic to neutral ferrocene, are unstable in the nonmechanical control experimental conditions that were accommodated by their ferrocene analogs. Replacing the electron withdrawing C-ester linkages with electron-donating C-alkyls conferred the necessary stability and enabled the mechanochemistry of the cobaltocenium to be assessed. Despite their high bond dissociation energy, cobaltocenium mechanophores are found to be selective sites of main chain scission under sonomechanical activation. Computational CoGEF calculations suggest that the presence of a counterion to cobaltocenium plays a vital role by promoting a peeling mechanism of dissociation in conjunction with the initial slipping.
Collapse
Affiliation(s)
- Yujin Cha
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ye Sha
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Huina Lin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - JiHyeon Hwang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Matthew Seraydarian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
5
|
Sha Y, Zhang H, Zhou Z, Luo Z. Stress-responsive properties of metallocenes in metallopolymers. Polym Chem 2021. [DOI: 10.1039/d1py00311a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review article combines the field of metallopolymers and stress-responsiveness on a molecular level, namely, metallocenes, as emerging stress-responsive building blocks for materials.
Collapse
Affiliation(s)
- Ye Sha
- College of Science
- Nanjing Forestry University
- Nanjing
- PR China
| | - Hao Zhang
- College of Science
- Nanjing Forestry University
- Nanjing
- PR China
| | - Zhou Zhou
- College of Science
- Nanjing Forestry University
- Nanjing
- PR China
| | - Zhenyang Luo
- College of Science
- Nanjing Forestry University
- Nanjing
- PR China
| |
Collapse
|
7
|
Sha Y, Jia H, Shen Z, Luo Z. Synthetic strategies, properties, and applications of unsaturated main-chain metallopolymers prepared by olefin metathesis polymerization. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1801727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ye Sha
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, PR China
| | - Huan Jia
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, PR China
| | - Zhihua Shen
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, PR China
| | - Zhenyang Luo
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, PR China
| |
Collapse
|