1
|
Jarak I, Ramos S, Caldeira B, Domingues C, Veiga F, Figueiras A. The Many Faces of Cyclodextrins within Self-Assembling Polymer Nanovehicles: From Inclusion Complexes to Valuable Structural and Functional Elements. Int J Mol Sci 2024; 25:9516. [PMID: 39273469 PMCID: PMC11395033 DOI: 10.3390/ijms25179516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Most chemotherapeutic agents are poorly soluble in water, have low selectivity, and cannot reach the tumor in the desired therapeutic concentration. On the other hand, sensitive hydrophilic therapeutics like nucleic acids and proteins suffer from poor bioavailability and cell internalization. To solve this problem, new types of controlled release systems based on nano-sized self-assemblies of cyclodextrins able to control the speed, timing, and location of therapeutic release are being developed. Cyclodextrins are macrocyclic oligosaccharides characterized by a high synthetic plasticity and potential for derivatization. Introduction of new hydrophobic and/or hydrophilic domains and/or formation of nano-assemblies with therapeutic load extends the use of CDs beyond the tried-and-tested CD-drug host-guest inclusion complexes. The recent advances in nano drug delivery have indicated the benefits of the hybrid amphiphilic CD nanosystems over individual CD and polymer components. This review provides a comprehensive overview of the most recent advances in the design of CDs self-assemblies and their use for delivery of a wide range of therapeutic molecules. It aims to offer a valuable insight into the many roles of CDs within this class of drug nanocarriers as well as current challenges and future perspectives.
Collapse
Affiliation(s)
- Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Sara Ramos
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Beatriz Caldeira
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
2
|
Zhang S, Tamura A, Yui N. Supramolecular nanoarchitectonics of propionylated polyrotaxanes with bulky nitrobenzyl stoppers for light-triggered drug release. RSC Adv 2024; 14:3798-3806. [PMID: 38274164 PMCID: PMC10809058 DOI: 10.1039/d4ra00213j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Cyclodextrin (CD)-based polyrotaxanes (PRXs) are supramolecular polymers comprising multiple CDs mechanically interlocked onto a linear polymer chain by capping the polymer ends with bulky stoppers. Among various PRX derivatives, propionylated PRXs (Pr-PRXs) composed of propionylated α-CD and high molecular-weight poly(ethylene glycol) (PEG) form self-assembled nanoparticles in aqueous solution through hydrophobic interactions. Although Pr-PRX nanoparticles can encapsulate hydrophobic drugs in their hydrophobic domains, their release rate is limited. To improve the efficiency of drug release from Pr-PRX nanoparticles, ultraviolet (UV) light-dissociable Pr-PRXs were designed using 4,5-dimethoxy 2-nitrobenzyl groups as UV-cleavable bulky stopper molecules to facilitate UV-induced drug release. Photodegradable Pr-PRX (Pr-PD-PRX) was synthesized, and its UV-induced dissociation was examined. Pr-PD-PRX was completely dissociated via UV irradiation (365 nm) for 30 min. Additionally, Pr-PD-PRX nanoparticles encapsulating hydrophobic drugs collapsed upon UV irradiation, which promoted the release of the encapsulated drugs compared to non-degradable Pr-PRX nanoparticles. UV irradiation of drug-loaded Pr-PD-PRX nanoparticles resulted in higher cytotoxicity than non-irradiated Pr-PD-PRX and non-degradable Pr-PRX. Consequently, designing photodegradable PRX-based nanoparticles provides new insights into developing photoresponsive drug carriers and smart biomedical materials.
Collapse
Affiliation(s)
- Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| |
Collapse
|
3
|
Kali G, Haddadzadegan S, Bernkop-Schnürch A. Cyclodextrins and derivatives in drug delivery: New developments, relevant clinical trials, and advanced products. Carbohydr Polym 2024; 324:121500. [PMID: 37985088 DOI: 10.1016/j.carbpol.2023.121500] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Cyclodextrins (CD) and derivatives are functional excipients that can improve the bioavailability of numerous drugs. Because of their drug solubility improving properties they are used in many pharmaceutical products. Furthermore, the stability of small molecular drugs can be improved by the incorporation in CDs and an unpleasant taste and smell can be masked. In addition to well-established CD derivatives including hydroxypropyl-β-CD, hydroxypropyl-γ-CD, methylated- β-CD and sulfobutylated- β-CD, there are promising new derivatives in development. In particular, CD-based polyrotaxanes exhibiting cellular uptake enhancing properties, CD-polymer conjugates providing sustained drug release, enhanced cellular uptake, and mucoadhesive properties, and thiolated CDs showing mucoadhesive, in situ gelling, as well as permeation and cellular uptake enhancing properties will likely result in innovative new drug delivery systems. Relevant clinical trials showed various new applications of CDs such as the formation of CD-based nanoparticles, stabilizing properties for protein drugs or the development of ready-to-use injection systems. Advanced products are making use of various benefical properties of CDs at the same time. Within this review we provide an overview on these recent developments and take an outlook on how this class of excipients will further shape the landscape of drug delivery.
Collapse
Affiliation(s)
- Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
4
|
Cyclodextrin-Based Polymeric Drug Delivery Systems for Cancer Therapy. Polymers (Basel) 2023; 15:polym15061400. [PMID: 36987181 PMCID: PMC10052104 DOI: 10.3390/polym15061400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Cyclodextrins (CDs) are one of the most extensively studied cyclic-oligosaccharides due to their low toxicity, good biodegradability and biocompatibility, facile chemical modification, and unique inclusion capacity. However, problems such as poor pharmacokinetics, plasma membrane disruption, hemolytic effects and a lack of target specificity still exist for their applications as drug carriers. Recently, polymers have been introduced into CDs to combine the advantages of both biomaterials for the superior delivery of anticancer agents in cancer treatment. In this review, we summarize four types of CD-based polymeric carriers for the delivery of chemotherapeutics or gene agents for cancer therapy. These CD-based polymers were classified based on their structural properties. Most of the CD-based polymers were amphiphilic with the introduction of hydrophobic/hydrophilic segments and were able to form nanoassemblies. Anticancer drugs could be included in the cavity of CDs, encapsulated in the nanoparticles or conjugated on the CD-based polymers. In addition, the unique structures of CDs enable the functionalization of targeting agents and stimuli-responsive materials to realize the targeting and precise release of anticancer agents. In summary, CD-based polymers are attractive carriers for anticancer agents.
Collapse
|
5
|
Fan Y, Liu Y, Wu Y, Dai F, Yuan M, Wang F, Bai Y, Deng H. Natural polysaccharides based self-assembled nanoparticles for biomedical applications - A review. Int J Biol Macromol 2021; 192:1240-1255. [PMID: 34678381 DOI: 10.1016/j.ijbiomac.2021.10.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
In recent years, nanoparticles (NPs) derived from the self-assembly of natural polysaccharides have shown great potential in the biomedical field. Here, we described several self-assembly modes of natural polysaccharides in detail, summarized the natural polysaccharides mostly used for self-assembly, and provided insights into the current applications and achievements of these self-assembled NPs. As one of the most widespread substances in nature, most natural polysaccharides exhibit advantages of biodegradability, low immunogenicity, low toxicity, and degradable properties. Therefore, they have been fully explored, and the application of chitosan, hyaluronic acid, alginate, starch, and their derivatives has been extensively studied, especially in the fields of biomedical. Polysaccharides based NPs were proved to improve the solubility of insoluble drugs, enhance tissue target ability and realize the controlled and sustained release of drugs. When modified by hydrophobic groups, the amphiphilic polysaccharides can self-assemble into NPs. Other driven forces of self-assembly include electrostatic interaction and hydrogen bonds. Up to the present, polysaccharides-based nanoparticles have been widely applied for tumor treatment, antibacterial application, gene therapy, photodynamic therapy and transporting insulin.
Collapse
Affiliation(s)
- Yaqi Fan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yang Wu
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Feiyan Wang
- Shanghai Skin Disease Clinical College of Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China
| | - Yun Bai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
6
|
Harada A, Takashima Y, Hashidzume A, Yamaguchi H. Supramolecular Polymers and Materials Formed by Host-Guest Interactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yoshinori Takashima
- Institute for Advanced Co-Creation Studies, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
7
|
Choi J, Takata T, Ajiro H. Pseudo-Polyrotaxane Stereocomplex with α-Cyclodextrin and Block Copolymers Using Poly(ethylene glycol) and Polylactide. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- JaeYeong Choi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Toshikazu Takata
- School of Chemical Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Hiroharu Ajiro
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
8
|
Tamura A, Ohashi M, Tonegawa A, Kang TW, Zhang S, Yui N. Effect of Alkyl Chain Length of Acylated α‐Cyclodextrin‐Threaded Polyrotaxanes on Thermoresponsive Phase Transition Behavior. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University (TMDU) 2‐3‐10 Kanda‐Surugadai Chiyoda Tokyo 101‐0062 Japan
| | - Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University (TMDU) 2‐3‐10 Kanda‐Surugadai Chiyoda Tokyo 101‐0062 Japan
| | - Asato Tonegawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University (TMDU) 2‐3‐10 Kanda‐Surugadai Chiyoda Tokyo 101‐0062 Japan
| | - Tae Woong Kang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University (TMDU) 2‐3‐10 Kanda‐Surugadai Chiyoda Tokyo 101‐0062 Japan
| | - Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University (TMDU) 2‐3‐10 Kanda‐Surugadai Chiyoda Tokyo 101‐0062 Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University (TMDU) 2‐3‐10 Kanda‐Surugadai Chiyoda Tokyo 101‐0062 Japan
| |
Collapse
|
9
|
Tonegawa A, Tamura A, Yui N. Acetylation of Cyclodextrin‐Threaded Polyrotaxanes Yields Temperature‐Responsive Phase Transition and Coacervate Formation Properties. Macromol Rapid Commun 2020; 41:e2000322. [DOI: 10.1002/marc.202000322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Asato Tonegawa
- Department of Organic Biomaterials Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University (TMDU) 2‐3‐10 Kanda‐Surugadai, Chiyoda Tokyo 101‐0062 Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University (TMDU) 2‐3‐10 Kanda‐Surugadai, Chiyoda Tokyo 101‐0062 Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University (TMDU) 2‐3‐10 Kanda‐Surugadai, Chiyoda Tokyo 101‐0062 Japan
| |
Collapse
|