1
|
Silvianti F, Maniar D, Agostinho B, de Leeuw TC, Woortman AJJ, van Dijken J, Thiyagarajan S, Sousa AF, Loos K. Enzymatic Synthesis of Copolyesters with the Heteroaromatic Diol 3,4-Bis(hydroxymethyl)furan and Isomeric Dimethyl Furandicarboxylate Substitutions. Biomacromolecules 2024; 25:2792-2802. [PMID: 38602263 PMCID: PMC11094730 DOI: 10.1021/acs.biomac.3c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Polyesters from furandicarboxylic acid derivatives, i.e., dimethyl 2,5-furandicarboxylate (2,5-DMFDCA) and 2,4-DMFDCA, show interesting properties among bio-based polymers. Another potential heteroaromatic monomer, 3,4-bis(hydroxymethyl)furan (3,4-BHMF), is often overlooked but holds promise for biopolymer synthesis. Cleaning and greening synthetic procedures, i.e., enzymatic polymerization, offer sustainable pathways. This study explores the Candida antarctica lipase B (CALB)-catalyzed copolymerization of 3,4-BHMF with furan dicarboxylate isomers and aliphatic diols. The furanic copolyesters (co-FPEs) with higher polymerization degrees are obtained using 2,4-isomer, indicating CALB's preference. Material analysis revealed semicrystalline properties in all synthesized 2,5-FDCA-based co-FPEs, with multiple melting temperatures (Tm) from 53 to 124 °C and a glass-transition temperature (Tg) of 9-10 °C. 2,4-FDCA-based co-FPEs showed multiple Tm from 43 to 61 °C and Tg of -14 to 12 °C; one of them was amorphous. In addition, all co-FPEs showed a two-step decomposition profile, indicating aliphatic and semiaromatic segments in the polymer chains.
Collapse
Affiliation(s)
- Fitrilia Silvianti
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Dina Maniar
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Beatriz Agostinho
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | | | - Albert Jan Jacob Woortman
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Jur van Dijken
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Shanmugam Thiyagarajan
- Wageningen
Food & Biobased Research, Wageningen
University and Research, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Andreia F. Sousa
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra
Rua Sílvio Lima—Polo II, Coimbra 3030-790, Portugal
| | - Katja Loos
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
2
|
Qu T, West KN, Rupar PA. Rapid synthesis of functional poly(ester amide)s through thiol-ene chemistry. RSC Adv 2023; 13:22928-22935. [PMID: 37520100 PMCID: PMC10375450 DOI: 10.1039/d3ra03478j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
Poly(ester amide)s (PEAs) bearing various side chains were synthesized by post-polymerization modification of PA-1, a vinylidene containing PEA. The thiols 1-dodecanethiol (1A-SH), 2-phenylethanethiol (1B-SH), 2-mercaptoethanol (1C-SH), thioglycolic acid (1D-SH), furfuryl mercaptan (1E-SH) and sodium-2-mercaptoethanesulfonate (1F-SH) were reacted with PA-1 to form PEAs PA-1A through PA-1F respectively. PEAs containing non-polar thiol side chains (PA-1A, PA-1B, PA-1E), showed little change in solubility compared to PA-1, while PEAs with more polar side chains improved solubility in more polar solvents. PA-1F, functionalized with sodium-2-mercaptoethanesulfonate, became water-soluble. The introduction of pendant functional groups impacted the thermal behaviors of PEAs in a wide range. The PEAs were thermally stable up to 368 °C, with glass transition temperatures (Tg) measured between 117 to 152 °C. Moreover, to demonstrate the versatility of the PEAs, thermal reprocessable networks and polyurethanes were successfully fabricated by reacting with a bismaleimide (1,6-bis(maleimido)hexane, 1,6-BMH) and a diisocyanate (4,4'-diphenylmethane diisocyanate, 4,4'-MDI), respectively. This study paves the way for the facile synthesis of functional poly(ester amide)s with great potential in many fields.
Collapse
Affiliation(s)
- Taoguang Qu
- Department of Chemistry & Biochemistry, The University of Alabama Tuscaloosa Alabama 35487-0336 USA
| | - Kevin N West
- Department of Chemical & Biomolecular Engineering, The University of South Alabama Mobile Alabama 36688-0001 USA
| | - Paul A Rupar
- Department of Chemistry & Biochemistry, The University of Alabama Tuscaloosa Alabama 35487-0336 USA
| |
Collapse
|
3
|
Paszkiewicz S, Walkowiak K, Irska I, Zubkiewicz A, Figiel P, Gorący K, El Fray M. Furan-based copoly(ester-ethers) and copoly(ester-amide-ethers). Comparison study on the phase structure, mechanical and thermal properties. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Silvianti F, Maniar D, Boetje L, Woortman AJJ, van Dijken J, Loos K. Greener Synthesis Route for Furanic-Aliphatic Polyester: Enzymatic Polymerization in Ionic Liquids and Deep Eutectic Solvents. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fitrilia Silvianti
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Dina Maniar
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Laura Boetje
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Albert J. J. Woortman
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Jur van Dijken
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| |
Collapse
|
6
|
Li N, Zong MH. (Chemo)biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
7
|
Controlled Cationic Polymerization of p-Methylstyrene in Ionic Liquid and Its Mechanism. Polymers (Basel) 2022; 14:polym14153165. [PMID: 35956680 PMCID: PMC9370950 DOI: 10.3390/polym14153165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Ionic liquid (IL) as a green solvent is entirely composed of ions; thus, it may be more than a simple solvent for ionic polymerization. Here, the cationic polymerization of p-methylstyrene (p-MeSt) initiated by 1-chloro-1-(4-methylphenyl)-ethane (p-MeStCl)/tin tetrachloride (SnCl4) was systematically studied in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim][NTf2]) IL at −25 °C. The results show that IL did not participate in cationic polymerization, but its ionic environment and high polarity were favorable for the polarization of initiator and monomer and facilitate the controllability. The gel permeation chromatography (GPC) trace of the poly(p-methylstyrene) (poly(p-MeSt)) changes from bimodal in dichloromethane (CH2Cl2) to unimodal in IL, and polydispersities Mw/Mn of the polymer in IL showed narrower (1.40–1.59). The reaction rate and heat release rate were milder in IL. The effects of the initiating system, Lewis acid concentration, and 2,6-di-tert-butylpyridine (DTBP) concentration on the polymerization were investigated. The controlled cationic polymerization initiated by p-MeStCl/SnCl4 was obtained. The polymerization mechanism of p-MeSt in [Bmim][NTf2] was also proposed.
Collapse
|
8
|
Walkowiak K, Irska I, Zubkiewicz A, Dryzek J, Paszkiewicz S. The Properties of Poly(ester amide)s Based on Dimethyl 2,5-Furanedicarboxylate as a Function of Methylene Sequence Length in Polymer Backbone. Polymers (Basel) 2022; 14:polym14112295. [PMID: 35683967 PMCID: PMC9182615 DOI: 10.3390/polym14112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
A series of poly(ester amide)s based on dimethyl furan 2,5-dicarboxylate (DMFDC), 1,3-propanediol (PDO), 1,6-hexylene glycol (HDO), and 1,3-diaminopropane (DAP) were synthesized via two-step melt polycondensation. The phase transition temperatures and structure of the polymers were studied by differential scanning calorimetry (DSC). The positron annihilation lifetime spectroscopy (PALS) measurement was carried out to investigate the free volume. In addition, the mechanical properties of two series of poly(ester amide)s were analyzed. The increase in the number of methylene groups in the polymer backbone resulted in a decrease in the values of the transition temperatures. Depending on the number of methylene groups and the content of the poly(propylene furanamide) (PPAF), both semi-crystalline and amorphous copolymers were obtained. The free volume value increased with a greater number of methylene groups in the polymer backbone. Moreover, with a lower number of methylene groups, the value of the Young modulus and stress at break increased.
Collapse
Affiliation(s)
- Konrad Walkowiak
- Department of Materials Technologies, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, PL 70310 Szczecin, Poland; (I.I.); (S.P.)
- Correspondence: ; Tel.: +48-91-449-45-89
| | - Izabela Irska
- Department of Materials Technologies, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, PL 70310 Szczecin, Poland; (I.I.); (S.P.)
| | - Agata Zubkiewicz
- Department of Physics, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, PL 70311 Szczecin, Poland;
| | - Jerzy Dryzek
- Institute of Nuclear Physics Polish Academy of Sciences, PL 31342 Krakow, Poland;
| | - Sandra Paszkiewicz
- Department of Materials Technologies, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, PL 70310 Szczecin, Poland; (I.I.); (S.P.)
| |
Collapse
|
9
|
Kasmi N, Terzopoulou Z, Chebbi Y, Dieden R, Habibi Y, Bikiaris DN. Tuning thermal properties and biodegradability of poly(isosorbide azelate) by compositional control through copolymerization with 2,5-furandicarboxylic acid. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Nikulin M, Švedas V. Prospects of Using Biocatalysis for the Synthesis and Modification of Polymers. Molecules 2021; 26:2750. [PMID: 34067052 PMCID: PMC8124709 DOI: 10.3390/molecules26092750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Trends in the dynamically developing application of biocatalysis for the synthesis and modification of polymers over the past 5 years are considered, with an emphasis on the production of biodegradable, biocompatible and functional polymeric materials oriented to medical applications. The possibilities of using enzymes not only as catalysts for polymerization but also for the preparation of monomers for polymerization or oligomers for block copolymerization are considered. Special attention is paid to the prospects and existing limitations of biocatalytic production of new synthetic biopolymers based on natural compounds and monomers from biomass, which can lead to a huge variety of functional biomaterials. The existing experience and perspectives for the integration of bio- and chemocatalysis in this area are discussed.
Collapse
Affiliation(s)
- Maksim Nikulin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Lenin Hills 1, bldg. 40, 119991 Moscow, Russia;
| | - Vytas Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Lenin Hills 1, bldg. 73, 119991 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, Lenin Hills 1, bldg. 4, 119991 Moscow, Russia
| |
Collapse
|
11
|
Papadopoulos L, Klonos PA, Kluge M, Zamboulis A, Terzopoulou Z, Kourtidou D, Magaziotis A, Chrissafis K, Kyritsis A, Bikiaris DN, Robert T. Unlocking the potential of furan-based poly(ester amide)s: an investigation of crystallization, molecular dynamics and degradation kinetics of novel poly(ester amide)s based on renewable poly(propylene furanoate). Polym Chem 2021. [DOI: 10.1039/d1py00713k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, novel polyester amides (PEAs) based on renewable poly(propylene furanoate) (PPF) were prepared via traditional melt polycondensation utilizing a preformed symmetric amido diol (AD) containing two internal amide bonds.
Collapse
Affiliation(s)
- Lazaros Papadopoulos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780, Athens, Greece
| | - Marcel Kluge
- Fraunhofer Institute for Wood Research – Wilhelm-Klauditz-Institut WKI, Bienroder Weg 54E, 38108 Braunschweig, Germany
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Zoi Terzopoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitra Kourtidou
- Laboratory of X-ray, Optical Characterization and Thermal Analysis, Physics Department, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Andreas Magaziotis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Konstantinos Chrissafis
- Laboratory of X-ray, Optical Characterization and Thermal Analysis, Physics Department, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780, Athens, Greece
| | - Dimitrios N. Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Tobias Robert
- Fraunhofer Institute for Wood Research – Wilhelm-Klauditz-Institut WKI, Bienroder Weg 54E, 38108 Braunschweig, Germany
| |
Collapse
|
12
|
Meimoun J, Bernhard Y, Pelinski L, Bousquet T, Pellegrini S, Raquez JM, De Winter J, Gerbaux P, Cazaux F, Tahon JF, Gaucher V, Chenal T, Favrelle-Huret A, Zinck P. Lipase-catalysed polycondensation of levulinic acid derived diol-diamide monomers: access to new poly(ester- co-amide)s. Polym Chem 2020. [DOI: 10.1039/d0py01301c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A new family of biobased poly(ester-co-amide)s is reported from the enzymatic polycondensation of a library of levulinic acid derived diol-diamide monomers with diesters.
Collapse
|