1
|
Qin J, Li J, Yang G, Chu K, Zhang L, Xu F, Chen Y, Zhang Y, Fan W, Hofkens J, Li B, Zhu Y, Wu H, Tan SC, Lai F, Liu T. A Bio-Inspired Magnetic Soft Robotic Fish for Efficient Solar-Energy Driven Water Purification. SMALL METHODS 2024:e2400880. [PMID: 39449204 DOI: 10.1002/smtd.202400880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Solar-driven water evaporation is a promising solution for global water scarcity but is still facing challenges due to its substantial energy requirements. Here, a magnetic soft robotic bionic fish is developed by combining magnetic nanoparticles (Fe3O4), poly(N-isopropylacrylamide), and carboxymethyl chitosan. This bionic fish can release liquid water through hydrophilic/hydrophobic phase transition and dramatically reduce energy consumption. The introduced Fe3O4 nanoparticles endow the bionic fish with magnetic actuation capability, allowing for remote operation and recovery. Additionally, the magnetic actuation process accelerates the water absorption rate of the bionic fish as confirmed by the finite element simulations. The results demonstrate that bionic fish can effectively remove not only organic molecular dyes dissolved in water but also harmful microbes and insoluble microparticles from natural lakes. Moreover, the bionic fish maintains a good purification efficiency even after five recycling cycles. Furthermore, the bionic fish possesses other functions, such as salt purification and salt rejection. Finally, the mechanism of water purification is explained in conjunction with molecular dynamics calculations. This work provides a new approach for efficient solar-energy water purification by phase transition behavior in soft robotics.
Collapse
Affiliation(s)
- Jingjing Qin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jiahao Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Guozheng Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaibin Chu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Leiqian Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Fangping Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yujie Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yaoxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, 201306, P. R. China
| | - Wei Fan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Bo Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Feili Lai
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
2
|
Yang Y, Wang S, Liu L, Yue B, Qi P, Zhang M, Song S. A Triterpene-Based bioactive drug delivery system for combined chemotherapy of liver cancer. Eur J Pharm Biopharm 2024; 201:114378. [PMID: 38917949 DOI: 10.1016/j.ejpb.2024.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Carrier materials always account for the majority particularly in nanosized formulations, which are administrated along with the active ingredient part might result in metabolism related toxicity. The usage of bioactive excipients could not only reduce the sided effect but also provide additional therapeutic effects. In the present study, a triterpene based micellar drug delivery system was developed using a bioactive solanesol derivative. Solanesylamine was prepared firstly followed by conjugating with poly (ethylene glycol) using maleic acid amide linkage. The amphiphilic drug carrier PEGylated (2-propyl-3-methylmaleic acid)-block-solanesol amine (mPEG-CDM-NH-SOL) could be formed into micelles and loaded with doxorubicin (DOX) inside. The micelles were about 112 nm in size and the drug loading content was about 5.97 wt%. An acid triggered drug release behavior was obviously observed for the DOX loaded pH-sensitive micelle mPEG-CDM-NH-SOL-DOX. While not for DOX-loaded micelles without pH-sensitivity (mPEG-NHS-NH-SOL). CCK8 assay showed that the micelles of PEGylated solanesylamines exhibited certain inhibitory effect on tumor cells at high concentration and the pH sensitive ones seemed more toxic. In vivo studies showed that the pH sensitive mPEG-CDM-NH-SOL-DOX had a superior anti-tumor effect, indicating its great potential in cancer treatment.
Collapse
Affiliation(s)
- Yanwei Yang
- Department of Pharmacy, the First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Shuaichao Wang
- School of Pharmacy, Henan University, Kaifeng, China 475004
| | - Lei Liu
- School of Pharmacy, Henan University, Kaifeng, China 475004.
| | - Bolin Yue
- School of Pharmacy, Henan University, Kaifeng, China 475004
| | - Peilan Qi
- College of Medical Science, Henan Vocational University of Science and Technology, Zhoukou, China 466000.
| | - Mengke Zhang
- School of Pharmacy, Henan University, Kaifeng, China 475004
| | - Shiyong Song
- School of Pharmacy, Henan University, Kaifeng, China 475004.
| |
Collapse
|
3
|
Alimardani V, Sadat Abolmaali S, Yousefi G, Hossein Nowroozzadeh M, Mohammad Tamaddon A. In-situ nanomicelle forming microneedles of poly NIPAAm-b-poly glutamic acid for trans-scleral delivery of dexamethasone. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
He Z, Liu Y, Wang H, Li P, Chen Y, Wang C, Zhou C, Song S, Chen S, Huang G, Yang Z. Dual-grafted dextran based nanomicelles: Higher antioxidant, anti-inflammatory and cellular uptake efficiency for quercetin. Int J Biol Macromol 2022; 224:1361-1372. [DOI: 10.1016/j.ijbiomac.2022.10.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
5
|
Facile synthesis of three-dimensional porous hydrogel and its evaluation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03855-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Wan M, Song S, Feng W, Shen H, Luo Y, Wu W, Shen J. Metal-Organic Framework (UiO-66)-Based Temperature-Responsive Pesticide Delivery System for Controlled Release and Enhanced Insecticidal Performance against Spodoptera frugiperda. ACS APPLIED BIO MATERIALS 2022; 5:4020-4027. [PMID: 35904971 DOI: 10.1021/acsabm.2c00549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spodoptera frugiperda is a global pest that brings about great disasters to crops. Conventional pesticide formulations often suffer from poor water solubility, low stability, burst release, weak leaf adhesion, and low efficiency. To improve the insecticidal activity of pesticides, a stimuli-responsive controlled release pesticide delivery system (PDS) has attracted extensive attention in recent years. This paper reports a temperature-responsive controlled release PDS based on poly(N-isopropyl acrylamide) (PNIPAm)-modified indoxacarb (IDC)-loaded UiO-66-(COOH)2 (IDC@UiO-66-(COOH)2-PNIPAm) and studies its insecticidal activities against S. frugiperda. The UiO-66-(COOH)2 nanocarrier has an excellent pesticide loading performance, and the loading rate for IDC is 78.69%. The as-prepared PDS has good stability, temperature-responsive controllable release performance, and enhanced leaf affinity, so it can effectively improve the utilization rate of IDC. The insecticidal experiment indicates that the PDS has an enhanced control effect against S. frugiperda. In addition, biosafety analysis further verifies that the PDS exhibits no obvious negative effects on the germination of maize seeds and the growth of maize seedlings. In view of this, we believe that this PDS will have a broad application in the field of pesticide formulation innovation, pest management, and sustainable agricultural development.
Collapse
Affiliation(s)
- Minghui Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenli Feng
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - He Shen
- CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yi Luo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Zenati A. Triblock Azo copolymers: RAFT synthesis, properties, thin film self-assembly and applications. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2015779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Athmen Zenati
- Refining and Petrochemistry, Division of Method and Operation, Sonatrach, Arzew, Algeria
- Central Directorate of Research and Development, Sonatrach, Boumerdes, Algeria
| |
Collapse
|
8
|
Pijeira MSO, Viltres H, Kozempel J, Sakmár M, Vlk M, İlem-Özdemir D, Ekinci M, Srinivasan S, Rajabzadeh AR, Ricci-Junior E, Alencar LMR, Al Qahtani M, Santos-Oliveira R. Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm Chem 2022; 7:8. [PMID: 35467307 PMCID: PMC9038981 DOI: 10.1186/s41181-022-00161-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent advances in nanotechnology have offered new hope for cancer detection, prevention, and treatment. Nanomedicine, a term for the application of nanotechnology in medical and health fields, uses nanoparticles for several applications such as imaging, diagnostic, targeted cancer therapy, drug and gene delivery, tissue engineering, and theranostics. RESULTS Here, we overview the current state-of-the-art of radiolabeled nanoparticles for molecular imaging and radionuclide therapy. Nanostructured radiopharmaceuticals of technetium-99m, copper-64, lutetium-177, and radium-223 are discussed within the scope of this review article. CONCLUSION Nanoradiopharmaceuticals may lead to better development of theranostics inspired by ingenious delivery and imaging systems. Cancer nano-theranostics have the potential to lead the way to more specific and individualized cancer treatment.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rua Helio de Almeida, 75, Ilha Do Fundão, Rio de Janeiro, RJ, 21941906, Brazil
| | - Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Jan Kozempel
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Michal Sakmár
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Martin Vlk
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Derya İlem-Özdemir
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, 35040, Bornova, Izmir, Turkey
| | - Meliha Ekinci
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, 35040, Bornova, Izmir, Turkey
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Eduardo Ricci-Junior
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21940000, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís, Maranhão, 65080-805, Brazil
| | - Mohammed Al Qahtani
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rua Helio de Almeida, 75, Ilha Do Fundão, Rio de Janeiro, RJ, 21941906, Brazil.
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, State University of Rio de Janeiro, Rio de Janeiro, 23070200, Brazil.
| |
Collapse
|
9
|
Kohestanian M, Pourjavadi A, Keshavarzi N. Facile and tunable method for polymeric surface modification of magnetic nanoparticles via RAFT polymerization: preparation, characterization, and drug release properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Kaur J, Gulati M, Kumar Jha N, Disouza J, Patravale V, Dua K, Kumar Singh S. Recent advances in developing polymeric micelles for treating cancer: breakthroughs and bottlenecks in their clinical translation. Drug Discov Today 2022; 27:1495-1512. [DOI: 10.1016/j.drudis.2022.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
|
11
|
Liu P, Huang P, Kang ET. pH-Sensitive Dextran-Based Micelles from Copper-Free Click Reaction for Antitumor Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12990-12999. [PMID: 34714094 DOI: 10.1021/acs.langmuir.1c02049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There remains a need to develop new strategies to fabricate dextran-based biocompatible drug delivery systems for safe and effective chemotherapy. Herein, a copper-free azide-propiolate ester click reaction was introduced for dextran modification to fabricate a pH-sensitive dextran-based drug delivery system. A pH-sensitive dextran-based micelle system, self-assembled from amphiphilic dextran-graft-poly(2-(diisopropylamino)ethyl methacrylate-co-2-(2',3',5'-triiodobenzoyl)ethyl methacrylate) or dextran-g-P(DPA-co-TIBMA), is reported for effective chemotherapy. The amphiphilic dextran-g-P(DPA-co-TIBMA) was prepared via reversible addition-fragmentation chain-transfer (RAFT) polymerization and copper-free azide-propiolate ester click reaction. Doxorubicin (DOX)-loaded dextran-g-P(DPA-co-TIBMA) micelles were prepared through self-assembly of DOX and dextran-g-P(DPA-co-TIBMA) in aqueous solution, and had a mean diameter of 154 nm and a drug loading content of 9.7 wt %. The release of DOX from DOX-loaded dextran-g-P(PDPA-co-TIBMA) micelles was slow at pH 7.4, but was greatly accelerated under acidic conditions (pH 6 and 5). Confocal laser scanning microscopy and flow cytometry experiments showed that the dextran-g-P(DPA-co-TIBMA) micelles could effectively deliver and release DOX in human breast cancer cell line (MCF-7 cells). MTT assay showed that dextran-g-P(DPA-co-TIBMA) exhibited excellent biocompatibility while DOX-loaded dextran-g-P(DPA-co-TIBMA) micelles have good antitumor efficacy in vitro. The in vivo therapeutic studies indicated that the DOX-loaded dextran-g-P(PDPA-co-TIBMA) micelles could effectively reduce the growth of tumor with little body weight reduction.
Collapse
Affiliation(s)
- Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| | - Ping Huang
- Division of Ultrasound, Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518058, China
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| |
Collapse
|
12
|
Bisbjerg G, Brown GW, Pham KS, Kock RA, Ramos W, Patierno JA, Bautista A, Zawalick NM, Vigil V, Padrnos JD, Mathers RT, Heying MD, Costanzo PJ. Exploring polymer solubility with thermally‐responsive Diels‐Alder monomers: Revisiting the monkey's fist. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Greg Bisbjerg
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Ginger W. Brown
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Kimberly S. Pham
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Ryan A. Kock
- Department of Chemistry Boston University Boston Massachusetts USA
| | - William Ramos
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Jordan A. Patierno
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | | | - Natalie M. Zawalick
- Department of Chemistry University of California at Los Angeles Los Angeles California USA
| | - Viviana Vigil
- Department of Marine Science California State University Monterey Bay Marina California USA
| | - John D. Padrnos
- Department of Chemistry Penn State University New Kensington Pennsylvania USA
| | - Robert T. Mathers
- Department of Chemistry Penn State University New Kensington Pennsylvania USA
| | - Michael D. Heying
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Philip J. Costanzo
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| |
Collapse
|
13
|
Zhao J, Peng YY, Diaz-Dussan D, White J, Duan W, Kong L, Narain R, Hao X. Zwitterionic Block Copolymer Prodrug Micelles for pH Responsive Drug Delivery and Hypoxia-Specific Chemotherapy. Mol Pharm 2021; 19:1766-1777. [PMID: 34473523 DOI: 10.1021/acs.molpharmaceut.1c00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tirapazamine (TPZ) and its derivatives (TPZD) have shown their great potential for efficiently killing hypoxic cancer cells. However, unsatisfactory clinical outcomes resulting from the low bioavailability of the low-molecular TPZ and TPZD limited their further applications. Precise delivery and release of these prodrugs via functional nanocarriers can significantly improve the therapeutic effects due to the targeted drug delivery and enhanced permeability and retention (EPR) effect. Herein, zwitterionic block copolymer (BCP) micelles with aldehyde functional groups are prepared from the self-assembly of poly(2-methacryloyloxyethyl phosphorylcholine-b-poly(di(ethylene glycol) methyl ether methacrylate-co-4-formylphenyl methacrylate) [PMPC-b-P(DEGMA-co-FPMA)]. TPZD is then grafted onto PMPC-b-P(DEGMA-co-FPMA) to obtain a polymer-drug conjugate, PMPC-b-P(DEGMA-co-FPMA-g-TPZD) (BCP-TPZ), through the formation of a pH-responsive imine bond, exhibiting a pH-dependent drug release profile owing to the cleavage of the imine bond under acidic conditions. Outstandingly, BCP-TPZ shows around 13.7-fold higher cytotoxicity to hypoxic cancer cells in comparison to normoxic cancer cells evaluated through an in vitro cytotoxicity assay. The pH-responsiveness and hypoxia-specific cytotoxicity confer BCP-TPZ micelles a great potential to achieve precise delivery of TPZD and thus enhance the therapeutic effect toward tumor-hypoxia.
Collapse
Affiliation(s)
- Jianyang Zhao
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.,Manufacturing, CSIRO, Research Way, Clayton, Victoria 3168, Australia
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, 116 Street and 85th Avenue, Edmonton T6G 2G6, Alberta, Canada
| | - Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, 116 Street and 85th Avenue, Edmonton T6G 2G6, Alberta, Canada
| | - Jacinta White
- Manufacturing, CSIRO, Research Way, Clayton, Victoria 3168, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, 116 Street and 85th Avenue, Edmonton T6G 2G6, Alberta, Canada
| | - Xiaojuan Hao
- Manufacturing, CSIRO, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
14
|
Polycaprolactone/chitosan core/shell nanofibrous mat fabricated by electrospinning process as carrier for rosuvastatin drug. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03566-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Deka SR, Sharma AK, Kumar P. Synthesis and evaluation of Poly(N-isopropylacrylamide)-based stimuli-responsive biodegradable carrier with enhanced loading capacity and controlled release properties. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Ganna S, Gutturu R, Borelli DP, Rao KM, Mallikarjuna K, Nannepaga JS. Formulation, optimization, and in vitro characterization of omega-3-rich binary lipid carriers for curcumin delivery: in vitro evaluation of sustained release and its potential antioxidant behavior. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|