1
|
Jariyasakoolroj P, Makyarm K, Klairasamee K, Sane A, Jarupan L. Crystallization behavior analysis and reducing thermal shrinkage of poly(lactic acid) miscibilized with poly(butylene succinate) film for food packaging. J Appl Polym Sci 2023. [DOI: 10.1002/app.53915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Piyawanee Jariyasakoolroj
- Department of Packaging and Materials Technology, Faculty of Agro‐Industry Kasetsart University Bangkok 10900 Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), KU Institute for Advanced Studies Kasetsart University Bangkok 10900 Thailand
| | - Kanyanut Makyarm
- Department of Packaging and Materials Technology, Faculty of Agro‐Industry Kasetsart University Bangkok 10900 Thailand
| | - Kanyapat Klairasamee
- Department of Packaging and Materials Technology, Faculty of Agro‐Industry Kasetsart University Bangkok 10900 Thailand
| | - Amporn Sane
- Department of Packaging and Materials Technology, Faculty of Agro‐Industry Kasetsart University Bangkok 10900 Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), KU Institute for Advanced Studies Kasetsart University Bangkok 10900 Thailand
| | - Lerpong Jarupan
- Department of Packaging and Materials Technology, Faculty of Agro‐Industry Kasetsart University Bangkok 10900 Thailand
| |
Collapse
|
2
|
Tsuji H, Nogata S, Tsukamoto N, Arakawa Y. Comparative study on the effects of incorporating poly(d,l-lactide) and solvent on stereocomplex crystallization and homocrystallization in unconstrained and constrained poly(l-lactide)/poly(d-lactide) systems. Polym J 2022. [DOI: 10.1038/s41428-022-00701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Zaky MS, Wirotius AL, Coulembier O, Guichard G, Taton D. Reaching High Stereoselectivity and Activity in Organocatalyzed Ring-Opening Polymerization of Racemic Lactide by the Combined Use of a Chiral (Thio)Urea and a N-Heterocyclic Carbene. ACS Macro Lett 2022; 11:1148-1155. [PMID: 36067070 DOI: 10.1021/acsmacrolett.2c00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stereochemical control during polymerization is a key strategy of polymer chemistry to achieve semicrystalline engineered plastics. The stereoselective ring-opening polymerization (ROP) of racemic lactide (rac-LA), which can lead to highly isotactic polylactide (PLA), is one of the emblematic examples in this area. Surprisingly, stereoselective ROP of rac-LA employing chiral organocatalysts has been under-leveraged. Here we show that a commercially available chiral thiourea (TU1), or its urea homologue (U1), can be used in conjunction with an appropriately selected N-heterocyclic carbene (NHC) to trigger the stereoselective ROP of rac-LA at room temperature in toluene. Both a high organic catalysis activity (>90% monomer conversion in 5-9 h) and a high stereoselectivity (probability of formation of meso dyads, Pm, in the range 0.82-0.93) can be achieved by thus pairing a NHC and a chiral amino(thio)urea. The less sterically hindered and the more basic NHC, that is, a NHC bearing tert-butyl substituents (NHCtBu), provides the highest stereoselectivity when employed in conjunction with the chiral TU1 or U1. This asymmetric organic catalysis strategy, as applied here in polymerization chemistry, further expands the field of possibilities to achieve bioplastics with adapted thermomechanical properties.
Collapse
Affiliation(s)
- Mohamed Samir Zaky
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
| | - Anne-Laure Wirotius
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
| | - Olivier Coulembier
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons, Mons B-7000, Belgium
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
| |
Collapse
|
4
|
Xu J, Wang X, Bian Z, Wu X, You J, Wang X. Surface crystalline structure of thin poly(l-lactide) films determined by the long-range substrate effect. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Chuang PY, Liao SY, Wu KH, Hu YR, Lo CT. Competitive Effects of Hydrogen Bonds and Molecular Weights on the Phase and Crystallization Behaviors of Binary Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Po-Yun Chuang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Shu-Yu Liao
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Kuang-Hsin Wu
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Yu-Rong Hu
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Chieh-Tsung Lo
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
6
|
Jing Z, Huang X, Liu X, Liao M, Zhang Z, Li Y. Crystallization, thermal and mechanical properties of stereocomplexed poly(lactide) with flexible PLLA/PCL multiblock copolymer. RSC Adv 2022; 12:13180-13191. [PMID: 35520119 PMCID: PMC9063687 DOI: 10.1039/d2ra00461e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, the synthesized PLLA/PCL multi-block copolymers with different compositions were introduced into a stereocomplexed poly(lactide) (sc-PLA) matrix to accelerate the stereocomplexation of PLA enantiomers and improve its inherent brittleness. The PLLA/PCL multi-block copolymers were in different compositions to adjust the molecular weight of the PLLA block. The structure, molecular weight, crystallization behavior, crystal structure and thermal stability of PLLA/PCL multi-block copolymers were investigated. The results indicated that PLLA/PCL multi-block copolymers with controllable structure and composition were successfully synthesized. On this basis, the blends of sc-PLA and PLLA/PCL multi-block copolymers were prepared by solution casting, and characterized. The results revealed that the introduction of PLLA/PCL multi-block copolymers promoted the stereocomplexation of the PLA enantiomers during the melting crystallization process to obtain a complete stereocomplexed material. But the presence of the PCL block leads to a decrease in the melting temperature of the stereocomplex and difficulty in homogeneous nucleation. Compared with sc-PLA, the elongation at break of the blends was significantly improved and their tensile strengths were only slightly reduced. And the thermal stability and mechanical properties of the blends could be adjusted by controlling the content and composition of PCL/PLLA multi-block copolymers. These results revealed that the degree of stereocomplexation and toughness of sc-PLA were improved, which may expand the application fields of PLA-based materials. The PLLA/PCL multi-block copolymer was introduced into the stereocomplexed PLA matrix, and its effect on the crystallization, thermal and mechanical properties of the stereocomplexed PLA was discussed.![]()
Collapse
Affiliation(s)
- Zhanxin Jing
- Department of Applied Chemistry, College of Chemistry and Environment, Guangdong Ocean University Zhanjiang China
| | - Xiaolan Huang
- Department of Applied Chemistry, College of Chemistry and Environment, Guangdong Ocean University Zhanjiang China
| | - Xinqi Liu
- Department of Applied Chemistry, College of Chemistry and Environment, Guangdong Ocean University Zhanjiang China
| | - Mingneng Liao
- Department of Applied Chemistry, College of Chemistry and Environment, Guangdong Ocean University Zhanjiang China
| | - Zhaoxia Zhang
- Department of Applied Chemistry, College of Chemistry and Environment, Guangdong Ocean University Zhanjiang China
| | - Yong Li
- Department of Applied Chemistry, College of Chemistry and Environment, Guangdong Ocean University Zhanjiang China
| |
Collapse
|
7
|
Substantially Enhanced Stereocomplex Crystallization of Poly(L-Lactide)/Poly(D-Lactide) Blends by the Formation of Multi-Arm Stereo-Block Copolymers. CRYSTALS 2022. [DOI: 10.3390/cryst12020210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stereocomplex-type polylactide (SC-PLA) created by alternate packing of poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) chains in a crystalline state has emerged as a growingly popular engineering bioplastic that possesses excellent hydrolytic stability and thermomechanical properties. However, it is extremely difficult to acquire high-performance SC-PLA products via melt-processing of high-molecular-weight PLLA/PDLA blends because both SC crystallites and homocrystallites (HCs) are competitively formed in the melt-crystallization. Herein, a facile yet powerful way was employed to boost SC formation by introducing trace amounts of some epoxy-functionalized small-molecule modifiers into the enantiomeric blends during reactive melt-blending. The results show that the SC formation is considerably enhanced with the in situ generation of multi-arm stereo-block PLA copolymers, based on the reaction between epoxy groups of the modifiers and hydroxyl end groups of PLAs. More impressively, it is intriguing to find that the introduction of only 0.5 wt% modifiers can induce exclusive SC formation in the blends upon isothermal and non-isothermal melt-crystallizations. The outstanding SC crystallizability might be attributed to the suppressing effect of such unique copolymers on the separation of the alternately arranged PLLA/PDLA chain segments in molten state as a compatibilizer. Furthermore, the generation of these copolymers does not result in a significant increase in melt viscosity of the blends. These findings suggest new opportunities for the high-throughput processing of SC-PLA materials into useful products.
Collapse
|
8
|
Tsuji H, Yamasaki M, Arakawa Y. Synthesis and Stereocomplexation of New Enantiomeric Stereo Periodical Copolymers Poly( l-lactic acid– l-lactic acid– d-lactic acid) and Poly( d-lactic acid– d-lactic acid– l-lactic acid). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hideto Tsuji
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Masato Yamasaki
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Yuki Arakawa
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
9
|
Tsuji H, Ohsada K, Arakawa Y. Stereocomplex- and homo-crystallization behavior, polymorphism, and thermal properties of enantiomeric random copolymers of l- and d-lactic acids from the melt. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
A generalizable strategy toward highly tough and heat-resistant stereocomplex-type polylactide/elastomer blends with substantially enhanced melt processability. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|