1
|
Li W, Liu X, Wang Y, Peng L, Jin X, Jiang Z, Guo Z, Chen J, Wang W. Research on high sensitivity piezoresistive sensor based on structural design. DISCOVER NANO 2024; 19:88. [PMID: 38753219 PMCID: PMC11098999 DOI: 10.1186/s11671-024-03971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/08/2024] [Indexed: 05/19/2024]
Abstract
With the popularity of smart terminals, wearable electronic devices have shown great market prospects, especially high-sensitivity pressure sensors, which can monitor micro-stimuli and high-precision dynamic external stimuli, and will have an important impact on future functional development. Compressible flexible sensors have attracted wide attention due to their simple sensing mechanism and the advantages of light weight and convenience. Sensors with high sensitivity are very sensitive to pressure and can detect resistance/current changes under pressure, which has been widely studied. On this basis, this review focuses on analyzing the performance impact of device structure design strategies on high sensitivity pressure sensors. The design of structures can be divided into interface microstructures and three-dimensional framework structures. The preparation methods of various structures are introduced in detail, and the current research status and future development challenges are summarized.
Collapse
Affiliation(s)
- Wei Li
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, 255000, People's Republic of China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang Province, People's Republic of China
| | - Xing Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yifan Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Lu Peng
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Xin Jin
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China.
| | - Zhaohui Jiang
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, 255000, People's Republic of China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang Province, People's Republic of China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing, People's Republic of China
| | - Zengge Guo
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Jie Chen
- PLA Naval Medical Center, Shang Hai, People's Republic of China
| | - Wenyu Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China.
| |
Collapse
|
2
|
Golba S, Loskot J. The Alphabet of Nanostructured Polypyrrole. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7069. [PMID: 38004999 PMCID: PMC10672593 DOI: 10.3390/ma16227069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023]
Abstract
This review is devoted to polypyrrole and its morphology, which governs the electroactivity of the material. The macroscopic properties of the material are strictly relevant to microscopic ordering observed at the local level. During the synthesis, various (nano)morphologies can be produced. The formation of the ordered structure is dictated by the ability of the local forces and effects to induce restraints that help shape the structure. This review covers the aspects of morphology and roughness and their impact on the final properties of the modified electrode activity in selected applications.
Collapse
Affiliation(s)
- Sylwia Golba
- Institute Materials Engineering, University of Silesia, 75 Pulku Piechoty Street 1A, 41-500 Chorzow, Poland
| | - Jan Loskot
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic;
| |
Collapse
|
3
|
Bhardwaj D, Gupta S, Mishra A, Singhal S, Shahjad, Balkhandia M, Sharma R, Patra A. Facile synthesis and polymerization of dibromo-bis-EDOT and its side-chain decorated dimer: an effective approach from dimer species. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Seike M, Uda M, Suzuki T, Minami H, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Synthesis of Polypyrrole and Its Derivatives as a Liquid Marble Stabilizer via a Solvent-Free Chemical Oxidative Polymerization Protocol. ACS OMEGA 2022; 7:13010-13021. [PMID: 35474829 PMCID: PMC9026107 DOI: 10.1021/acsomega.2c00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 05/25/2023]
Abstract
Solvent-free chemical oxidative polymerizations of pyrrole and its derivatives, namely N-methylpyrrole and N-ethylpyrrole, were conducted by mechanical mixing of monomer and solid FeCl3 oxidant under nitrogen atmosphere. Polymerizations occurred at the surface of the oxidant, and optical and scanning electron microscopy studies confirmed production of atypical grains with diameters of a few tens of micrometers. Fourier transform infrared spectroscopy studies indicated the presence of hydroxy and carbonyl groups which were introduced during the polymerization due to overoxidation. The polymer grains were doped with chloride ions, and the chloride ion dopant could be removed by dedoping using an aqueous solution of sodium hydroxide, which was confirmed by elemental microanalysis and X-ray photoelectron spectroscopy studies. Water contact angle measurements confirmed that the larger the alkyl group on the nitrogen of pyrrole ring the higher the hydrophobicity and that the contact angles increased after dedoping in all cases. The grains before and after dedoping exhibited photothermal properties: the near-infrared laser irradiation induced a rapid temperature increase to greater than 430 °C. Furthermore, dedoped poly(N-ethylpyrrole) grains adsorbed to the air-water interface and could work as an effective liquid marble stabilizer. The resulting liquid marble could move on a planar water surface due to near-infrared laser-induced Marangoni flow and could disintegrate by exposure to acid vapor via redoping of the poly(N-ethylpyrrole) grains.
Collapse
Affiliation(s)
- Musashi Seike
- Division
of Applied Chemistry, Environmental and Biomedical Engineering, Graduate
School of Engineering, Osaka Institute of
Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Makoto Uda
- Division
of Applied Chemistry, Environmental and Biomedical Engineering, Graduate
School of Engineering, Osaka Institute of
Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Toyoko Suzuki
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Hideto Minami
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Shinya Higashimoto
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials
Microdevices Research Center, Osaka Institute
of Technology, 5-16-1
Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials
Microdevices Research Center, Osaka Institute
of Technology, 5-16-1
Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials
Microdevices Research Center, Osaka Institute
of Technology, 5-16-1
Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
5
|
Zahid M, Anwer Rathore H, Tayyab H, Ahmad Rehan Z, Abdul Rashid I, Lodhi M, Zubair U, Shahid I. Recent developments in textile based polymeric smart sensor for human health monitoring: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|