1
|
Tullii G, Gutierrez-Fernandez E, Ronchi C, Bellacanzone C, Bondi L, Criado-Gonzalez M, Lagonegro P, Moccia F, Cramer T, Mecerreyes D, Martín J, Antognazza MR. Bimodal modulation of in vitro angiogenesis with photoactive polymer nanoparticles. NANOSCALE 2023; 15:18716-18726. [PMID: 37953671 DOI: 10.1039/d3nr02743k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Angiogenesis is a fundamental process in biology, given the pivotal role played by blood vessels in providing oxygen and nutrients to tissues, thus ensuring cell survival. Moreover, it is critical in many life-threatening pathologies, like cancer and cardiovascular diseases. In this context, conventional treatments of pathological angiogenesis suffer from several limitations, including low bioavailability, limited spatial and temporal resolution, lack of specificity and possible side effects. Recently, innovative strategies have been explored to overcome these drawbacks based on the use of exogenous nano-sized materials and the treatment of the endothelial tissue with optical or electrical stimuli. Here, conjugated polymer-based nanoparticles are proposed as exogenous photo-actuators, thus combining the advantages offered by nanotechnology with those typical of optical stimulation. Light excitation can achieve high spatial and temporal resolution, while permitting minimal invasiveness. Interestingly, the possibility to either enhance (≈+30%) or reduce (up to -65%) the angiogenic capability of model endothelial cells is demonstrated, by employing different polymer beads, depending on the material type and the presence/absence of the light stimulus. In vitro results reported here represent a valuable proof of principle of the reliability and efficacy of the proposed approach and should be considered as a promising step towards a paradigm shift in therapeutic angiogenesis.
Collapse
Affiliation(s)
- Gabriele Tullii
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy.
| | - Edgar Gutierrez-Fernandez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Carlotta Ronchi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy.
| | - Christian Bellacanzone
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy.
| | - Luca Bondi
- DiFA University of Bologna, Viale Carlo Berti Pichat 6/2 Bologna, 40127, Italy
| | - Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Paola Lagonegro
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy.
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Tobias Cramer
- DiFA University of Bologna, Viale Carlo Berti Pichat 6/2 Bologna, 40127, Italy
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jaime Martín
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Campus Esteiro S/N, 15403 Ferrol, Spain
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy.
| |
Collapse
|
2
|
Sanviti M, Alegria A, Martínez-Tong DE. Fabrication and nanoscale properties of PEDOT:PSS conducting polymer nanospheres. SOFT MATTER 2022; 18:4554-4564. [PMID: 35674769 DOI: 10.1039/d1sm01712h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrically conducting nanospheres of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with tailored size were prepared using a solvent displacement technique. To fabricate these nanostructures, dried PEDOT:PSS was dissolved in ethylene glycol (EG) and the solution was precipitated in deionized water. The proposed fabrication route allowed obtaining a water-based dispersion of PEDOT:PSS nanospheres with good optical properties. To determine the physical properties of the nanospheres, we followed a nanoscale approach, using atomic force microscopy. Our nanoscale mechanical and electrical investigations showed that the nanospheres retained good physical and conductivity properties, compared to the commercial product. Moreover, the local studies indicated that the reprecipitation process and the spherical shape lead to a different arrangement of the PSS and PEDOT phases.
Collapse
Affiliation(s)
- Matteo Sanviti
- Centro de Física de Materiales (CFM, CSIC-UPV/EHU), P. Manuel Lardizábal 5, 20018 San Sebastián, Spain.
- Departamento Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, 20018 San Sebastián, Spain
| | - Angel Alegria
- Centro de Física de Materiales (CFM, CSIC-UPV/EHU), P. Manuel Lardizábal 5, 20018 San Sebastián, Spain.
- Departamento Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, 20018 San Sebastián, Spain
| | - Daniel E Martínez-Tong
- Centro de Física de Materiales (CFM, CSIC-UPV/EHU), P. Manuel Lardizábal 5, 20018 San Sebastián, Spain.
- Departamento Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, 20018 San Sebastián, Spain
| |
Collapse
|
3
|
Preparation, Physical Properties, and Applications of Water-Based Functional Polymer Inks. Polymers (Basel) 2021; 13:polym13091419. [PMID: 33925696 PMCID: PMC8124647 DOI: 10.3390/polym13091419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, water-based functional polymer inks are prepared using different solvent displacement methods, in particular, polymer functional inks based on semiconducting polymer poly(3-hexylthiophene) and the ferroelectric polymer poly(vinylidene fluoride) and its copolymers with trifluoroethylene. The nanoparticles that are included in the inks are prepared by miniemulsion, as well as flash and dialysis nanoprecipitation techniques and we discuss the properties of the inks obtained by each technique. Finally, an example of the functionality of a semiconducting/ferroelectric polymer coating prepared from water-based inks is presented.
Collapse
|