1
|
Jang YJ, Nguyen S, Hillmyer MA. Chemically Recyclable Linear and Branched Polyethylenes Synthesized from Stoichiometrically Self-Balanced Telechelic Polyethylenes. J Am Chem Soc 2024; 146:4771-4782. [PMID: 38323928 DOI: 10.1021/jacs.3c12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
High-density polyethylene (HDPE) is a widely used commercial plastic due to its excellent mechanical properties, chemical resistance, and water vapor barrier properties. However, less than 10% of HDPE is mechanically recycled, and the chemical recycling of HDPE is challenging due to the inherent strength of the carbon-carbon backbone bonds. Here, we report chemically recyclable linear and branched HDPE with sparse backbone ester groups synthesized from the transesterification of telechelic polyethylene macromonomers. Stoichiometrically self-balanced telechelic polyethylenes underwent transesterification polymerization to produce the PE-ester samples with high number-average molar masses of up to 111 kg/mol. Moreover, the transesterification polymerization of the telechelic polyethylenes and the multifunctional diethyl 5-(hydroxymethyl)isophthalate generated branched PE-esters. Thermal and mechanical properties of the PE-esters were comparable to those of commercial HDPE and tunable through control of the ester content in the backbone. In addition, branched PE-esters showed higher levels of melt strain hardening compared with linear versions. The PE-ester was depolymerized into telechelic macromonomers through straightforward methanolysis, and the resulting macromonomers could be effectively repolymerized to generate a high molar mass recycled PE-ester sample. This is a new and promising method for synthesizing and recycling high-molar-mass linear and branched PE-esters, which are competitive with HDPE and have easily tailorable properties.
Collapse
Affiliation(s)
- Yoon-Jung Jang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sam Nguyen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Zhang X, Li T, He A, Yang L, Noda I, Ozaki Y, Xu Y. Comprehensive modified approaches to reducing the interference of moisture from an FTIR spectrum and the corresponding second derivative spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122004. [PMID: 36327803 DOI: 10.1016/j.saa.2022.122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
We proposed a modified and improved approach to removing the interference of moisture from an IR spectrum and the corresponding second derivative spectrum. The temperature fluctuation in the air of the optical path and baseline-drift lead to the small but persistent presence of the interference of moisture. The problem has been successfully addressed by adopting a double-matching strategy. Additionally, two-dimensional correlationspectra (2D-COS) are generated using the second derivative or third derivative spectrum of the negative base 10 logarithms of the single-beam spectra, thereby removing the linear slope or quadratic portion of baseline-drift. Using the newly adopted approach, the residual interferences of moisture are attenuated. We applied the new approach to the IR spectra and the second derivative spectra of neat hexadecanol and biaxially oriented polypropylene (BOPP) film, and some promising preliminary results are obtained. In hexadecanol, two highly overlapping peaks at 1464 and 1463 cm-1 are revealed. In BOPP, the envelope at 1458 cm-1 is found to be composed of a number of sub-peaks.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tianyi Li
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669 - 1330, Japan
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
FTIR-ATR spectroscopic, thermal and microstructural studies on polypropylene-glass fiber composites. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Qian C, Zhao Y, Wang D. Structural evolution of mesomorphic propylene–1‐butene random copolymer during heating process. POLYM INT 2021. [DOI: 10.1002/pi.6303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chengao Qian
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Ying Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics Institute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|