1
|
Majer-Baranyi K, Adányi N, Székács A. Current Trends in Mycotoxin Detection with Various Types of Biosensors. Toxins (Basel) 2023; 15:645. [PMID: 37999508 PMCID: PMC10675009 DOI: 10.3390/toxins15110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
One of the most important tasks in food safety is to properly manage the investigation of mycotoxin contamination in agricultural products and foods made from them, as well as to prevent its occurrence. Monitoring requires a wide range of analytical methods, from expensive analytical procedures with high-tech instrumentation to significantly cheaper biosensor developments or even single-use assays suitable for on-site monitoring. This review provides a summary of the development directions over approximately a decade and a half, grouped according to the biologically sensitive components used. We provide an overview of the use of antibodies, molecularly imprinted polymers, and aptamers, as well as the diversity of biosensors and their applications within the food industry. We also mention the possibility of determining multiple toxins side by side, which would significantly reduce the time required for the analyses.
Collapse
Affiliation(s)
- Krisztina Majer-Baranyi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - Nóra Adányi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary;
| |
Collapse
|
2
|
Bossi AM, Marinangeli A, Quaranta A, Pancheri L, Maniglio D. Time-Resolved Fluorescence Spectroscopy of Molecularly Imprinted Nanoprobes as an Ultralow Detection Nanosensing Tool for Protein Contaminants. BIOSENSORS 2023; 13:745. [PMID: 37504143 PMCID: PMC10377162 DOI: 10.3390/bios13070745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Currently, optical sensors based on molecularly imprinted polymers (MIPs) have been attracting significant interest. MIP sensing relies on the combination of the MIP's selective capability, which is conveyed to the polymeric material by a template-assisted synthesis, with optical techniques that offer exquisite sensitivity. In this work, we devised an MIP nanoparticle optical sensor for the ultralow detection of serum albumin through time-resolved fluorescence spectroscopy. The Fluo-nanoMIPs (∅~120 nm) were synthetized using fluorescein-O-methacrylate (0.1×, 1×, 10× mol:mol versus template) as an organic fluorescent reporter. The ability of 0.1× and 1×Fluo-nanoMIPs to bind albumin (15 fM-150 nM) was confirmed by fluorescence intensity analyses and isothermal titration calorimetry. The apparent dissociation constant (Kapp) was 30 pM. Conversely, the 10× fluorophore content did not enable monitoring binding. Then, the time-resolved fluorescence spectroscopy of the nanosensors was studied. The 1×Fluo-nanoMIPs showed a decrease in fluorescence lifetime upon binding to albumin (100 fM-150 nM), Kapp = 28 pM, linear dynamic range 3.0-83.5 pM, limit of detection (LOD) 1.26 pM. Selectivity was confirmed testing 1×Fluo-nanoMIPs against competitor proteins. Finally, as a proof of concept, the nanosensors demonstrated detection of the albumin (1.5 nM) spiked in wine samples, suggesting a possible scaling up of the method in monitoring allergens in wines.
Collapse
Affiliation(s)
- Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Alice Marinangeli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy
| | - Alberto Quaranta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy
- INFN-TIFPA, Via Sommarive 14, Povo, 38123 Trento, Italy
| | - Lucio Pancheri
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy
| | - Devid Maniglio
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy
| |
Collapse
|
3
|
Leung JN, Luong HTT, Huynh HV. Stereoelectronic Profiling of Neutral and Monoanionic Biimidazoles and Mixed Diimines. Inorg Chem 2023; 62:4606-4617. [PMID: 36872911 DOI: 10.1021/acs.inorgchem.3c00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
14 mono-, di-, and tetranuclear palladium complexes were prepared to study the coordination chemistry of symmetrical and unsymmetrical azole-derived diimines and their anions. The diverse range of complexes obtained highlights the structural and electronic diversities imposed by these ligands. Using the monopalladium species, the electronic properties of selected bidentate ligands were determined, ranked, and compared by 13C NMR spectroscopy, extending the scope of the HEP2 (Huynh electronic parameter 2) scale, which can detect even subtle differences. Moreover, the %Vbur (percentage volume buried) values as an estimate for the steric bulk of some ligands were determined using the solid-state molecular structures of their complexes, and a preliminary stereoelectronic map was established.
Collapse
Affiliation(s)
- Jia Nuo Leung
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117453, Republic of Singapore
| | - Huyen T T Luong
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117453, Republic of Singapore
| | - Han Vinh Huynh
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117453, Republic of Singapore
| |
Collapse
|
4
|
Liu R, Ko CC. Molecularly Imprinted Polymer-Based Luminescent Chemosensors. BIOSENSORS 2023; 13:295. [PMID: 36832061 PMCID: PMC9953969 DOI: 10.3390/bios13020295] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Molecularly imprinted polymer (MIP)-based luminescent chemosensors combine the advantages of the highly specific molecular recognition of the imprinting sites and the high sensitivity with the luminescence detection. These advantages have drawn great attention during the past two decades. Luminescent molecularly imprinted polymers (luminescent MIPs) towards different targeted analytes are constructed with different strategies, such as the incorporation of luminescent functional monomers, physical entrapment, covalent attachment of luminescent signaling elements on the MIPs, and surface-imprinting polymerization on the luminescent nanomaterials. In this review, we will discuss the design strategies and sensing approaches of luminescent MIP-based chemosensors, as well as their selected applications in biosensing, bioimaging, food safety, and clinical diagnosis. The limitations and prospects for the future development of MIP-based luminescent chemosensors will also be discussed.
Collapse
|
5
|
Urriza-Arsuaga I, Guadaño-Sánchez M, Urraca JL. Current Trends in Molecular Imprinting: Strategies, Applications and Determination of Target Molecules in Spain. Int J Mol Sci 2023; 24:ijms24031915. [PMID: 36768237 PMCID: PMC9916028 DOI: 10.3390/ijms24031915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Over the last decades, an increasing demand for new specific molecular recognition elements has emerged in order to improve analytical methods that have already been developed in order to reach the detection/quantification limits of target molecules. Molecularly imprinted polymers (MIPs) have molecular recognition abilities provided by the presence of a template molecule during their synthesis, and they are excellent materials with high selectivity for sample preparation. These synthetic polymers are relatively easy to prepare, and they can also be an excellent choice in the substitution of antibodies or enzymes in different kinds of assays. They have been properly applied to the development of chromatographic or solid-phase extraction methods and have also been successfully applied as electrochemical, piezoelectrical, and optical sensors, as well as in the catalysis process. Nevertheless, new formats of polymerization can also provide new applications for these materials. This paper provides a comprehensive comparison of the new challenges in molecular imprinting as materials of the future in Spain.
Collapse
Affiliation(s)
| | - Miriam Guadaño-Sánchez
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Analytical Chemistry, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Javier Lucas Urraca
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Analytical Chemistry, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
6
|
Sergeyeva T, Piletska O, Piletsky S. Rationally designed molecularly imprinted polymer membranes as antibody and enzyme mimics in analytical biotechnology. BBA ADVANCES 2022; 3:100070. [PMID: 37082261 PMCID: PMC10074925 DOI: 10.1016/j.bbadva.2022.100070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The paper is a self-review of works on development of new approaches to formation of mimics of receptor and catalytic sites of biological macromolecules in the structure of highly cross-linked polymer membranes and thin films. The general strategy for formation of the binding sites in molecularly imprinted polymer (MIP) membranes and thin films was described. A selective recognition of a number of food toxins, endocrine disruptors and metabolites is based on the results of computational modeling data for the prediction and optimization of their structure. A strategy proposed for the design of the artificial binding sites in MIP membranes was supported by the research performed by the authors on development of a number of the MIP membrane-based affinity and catalytic biosensors for selective and sensitive measurement (detection limits 0.3-100 nM) of the target analytes. Novel versatile approaches aimed at improving sensitivity of the developed biosensor systems were discussed.
Collapse
Affiliation(s)
- Tetyana Sergeyeva
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., 03680, Kyiv, Ukraine
| | - Olena Piletska
- University of Leicester, Department of Chemistry, Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Sergiy Piletsky
- University of Leicester, Department of Chemistry, Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
7
|
Hua Y, Ahmadi Y, Sonne C, Kim KH. Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119218. [PMID: 35364185 DOI: 10.1016/j.envpol.2022.119218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Mycotoxin is toxic secondary metabolite formed by certain filamentous fungi. This toxic compound can enter the food chain through contamination of food (e.g., by colonization of toxigenic fungi on food). In light of the growing concerns on the health hazards posed by mycotoxins, it is desirable to develop reliable analytical tools for their detection in food products in both sensitive and efficient manner. For this purpose, the potential utility of molecularly imprinted polymers (MIPs) has been explored due to their meritful properties (e.g., large number of tailor-made binding sites, sensitive template molecules, high recognition specificity, and structure predictability). This review addresses the recent advances in the application of MIPs toward the sensing of various mycotoxins (e.g., aflatoxins and patulin) along with their fabrication strategies. Then, performance evaluation is made for various types of MIP- and non-MIP-based sensing platforms built for the listed target mycotoxins in terms of quality assurance such as limit of detection (LOD). Further, the present challenges in the MIP-based sensing application of mycotoxins are discussed along with the future outlook in this research field.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Moulahoum H, Ghorbanizamani F, Guler Celik E, Timur S. Nano-Scaled Materials and Polymer Integration in Biosensing Tools. BIOSENSORS 2022; 12:301. [PMID: 35624602 PMCID: PMC9139048 DOI: 10.3390/bios12050301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022]
Abstract
The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review discusses the latest developments in nano-scaled materials and synthesis techniques for polymer structures and their integration into sensing applications by highlighting their various structural advantages in producing highly sensitive tools that rival bench-top instruments. The developments in material design open a new door for decentralized medicine and public protection that allows effective onsite and point-of-care diagnostics.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey;
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
9
|
Quílez-Alburquerque J, García-Iriepa C, Marazzi M, Descalzo AB, Orellana G. Interaction of a 1,3-Dicarbonyl Toxin with Ru(II)-Biimidazole Complexes for Luminescence Sensing: A Spectroscopic and Photochemical Experimental Study Rationalized by Time-Dependent Density Functional Theory Calculations. Inorg Chem 2022; 61:328-337. [PMID: 34923820 PMCID: PMC8753653 DOI: 10.1021/acs.inorgchem.1c02887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 12/05/2022]
Abstract
A family of ruthenium(II) complexes containing one 2,2'-biimidazole (bim) ligand and two polypyridyl (NN) ligands has been prepared and their photophysical and photochemical features have been tested in the presence of tenuazonic acid (TeA), a widespread food and feed mycotoxin of current concern. While not tested in in vivo studies, TeA and other secondary metabolites of Alternaria fungi are suspected to exert adverse effects on the human health, so sensors and rapid analytical procedures are required. It is well-known that 1,3-dicarbonyl compounds such as TeA are relatively easy to deprotonate (the pKa of TeA is 3.5), yielding an enolate anion stabilized by resonance. The chelating and hydrogen-donor features of bim allow simultaneous binding to the metal core and to the target β-diketonate delocalized anion. Such a binding induces changes in the blue absorption (40 nm bathochromic shift), red luminescence intensity (>75% quenching), and triplet lifetime (0.2 μs decrease) of the Ru(NN)2(bim)2+ luminophore. Moreover, we have computationally rationalized, by time-dependent density functional theory, the structure of the different adducts of Ru-bim complexes with TeA and the electronic nature of the spectral absorption bands and their change upon the addition of TeA.
Collapse
Affiliation(s)
- José Quílez-Alburquerque
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Cristina García-Iriepa
- Departamento
de Química Analítica, Química Física e
Ingeniería Química, Universidad
de Alcalá, Alcalá
de Henares (Madrid) 28871, Spain
- Instituto
de Investigación Química “Andrés M. del
Río” (IQAR), Universidad de
Alcalá, Alcalá de
Henares (Madrid) 28871, Spain
| | - Marco Marazzi
- Departamento
de Química Analítica, Química Física e
Ingeniería Química, Universidad
de Alcalá, Alcalá
de Henares (Madrid) 28871, Spain
- Instituto
de Investigación Química “Andrés M. del
Río” (IQAR), Universidad de
Alcalá, Alcalá de
Henares (Madrid) 28871, Spain
| | - Ana B. Descalzo
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Guillermo Orellana
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|