Yu X, Wang X, He W. Leveraging Microgels Prepared from Poly(ethylene glycol) Bisepoxide and Polyetheramine for Versatile Surface Structuring of Agarose Hydrogels.
ACS APPLIED BIO MATERIALS 2023;
6:4430-4438. [PMID:
37788183 DOI:
10.1021/acsabm.3c00660]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We demonstrate a macromer-type bisepoxide, poly(ethylene glycol) diglycidyl ether, polymerizing readily with a trifunctional polyetheramine Jeffamine T-403 in water to facilitate the development of a series of microgels abbreviated as PMG. Simply by varying the concentration of the as-prepared thermoresponsive intermediate prepolymer from 1 to 2 and 4%, hydrodynamic sizes of the resulting P1MG, P2MG, and P4MG are easily tuned in the submicrometer to micrometer range shown by the dynamic light scattering results. Besides size difference, these microgels also deform differently, where the drying-induced deformation effect is most severe for P1MG and least prominent for P4MG. Simple evaporative deposition of PMG into multilayer packing provides versatile and green options for microgel-mediated surface structuring of agarose hydrogels. Specifically, deformabile P1MG- and P2MG-derived coatings render agarose gel microwrinkle textures by buckling against swelling-induced surface instability. Conversely, stiffer P4MG microgels lead to a patchy patterned hierarchical coating on agarose, similar to the cracking effect in drying colloidal films. The straightforward microgel-on-macrogel strategy allows integration of both wrinkle and patchy patterns to generate Janus-type agarose gels, just by rationally arranging the coating sequence. Diversifying topographic features attainable through microgel-based coatings on hydrogels could potentially make the sustainable and biocompatible material of agarose a more compelling choice for bioapplications. Brief demonstrations of the broad applicability of P1MG toward wrinkling of proteinaceous and synthetic hydrogels further highlight promising prospects of the PMG microgel-on-macrogel functionalization strategy.
Collapse