1
|
Ang BC, Nam HY, Abdullah MF, Muhammad F, Truong YB. A Review on Advances and Challenges in Core-Shell Scaffolds for Bone Tissue Engineering: Design, Fabrication, and Clinical Translation. Macromol Rapid Commun 2024:e2400620. [PMID: 39489721 DOI: 10.1002/marc.202400620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/11/2024] [Indexed: 11/05/2024]
Abstract
This review explores core-shell scaffolds in bone tissue engineering, highlighting their osteoconductive and osteoinductive properties critical for bone growth and regeneration. Key design factors include material selection, porosity, mechanical strength, biodegradation kinetics, and bioactivity. Electrospun core-shell nanofibrous scaffolds demonstrate potential in delivering therapeutic agents and enhancing bone regeneration. Critical characterization techniques include structural, surface, chemical composition, mechanical, and degradation analyses. Scaling up production poses challenges, addressed by innovative electrospinning techniques. Future research focuses on regulatory and commercial considerations, while exploring advanced materials and fabrication methods to optimize scaffold performance for improved clinical outcomes.
Collapse
Affiliation(s)
- Bee Chin Ang
- Center of Advanced Materials, University Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Chemical Engineering, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Hui Yin Nam
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, 43000, Malaysia
| | - Muhammad Faiq Abdullah
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau Perlis, 02600, Malaysia
| | - Farina Muhammad
- Department of Biomedical Engineering, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yen Bach Truong
- CSIRO Manufacturing, Research Way, Clayton, Victoria, 3168, Australia
| |
Collapse
|
2
|
Chinnakorn A, Soi-Ngoen Y, Weeranantanapan O, Pakawanit P, Maensiri S, Srisom K, Janphuang P, Radacsi N, Nuansing W. Fabrication of 3D Polycaprolactone Macrostructures by 3D Electrospinning. ACS Biomater Sci Eng 2024; 10:5336-5351. [PMID: 38776479 PMCID: PMC11322913 DOI: 10.1021/acsbiomaterials.4c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Building 3D electrospun macrostructures and monitoring the biological activities inside them are challenging. In this study, 3D fibrous polycaprolactone (PCL) macrostructures were successfully fabricated using in-house 3D electrospinning. The main factors supporting the 3D self-assembled nanofiber fabrication are the H3PO4 additives, flow rate, and initial distance. The effects of solution concentration, solvent, H3PO4 concentration, flow rate, initial distance, voltage, and nozzle speed on the 3D macrostructures were examined. The optimal conditions of 4 mL/h flow rate, 4 cm initial nozzle-collector distance, 14 kV voltage, and 1 mm/s nozzle speed provided a rapid buildup of cylinder macrostructures with 6 cm of diameter, reaching a final height of 16.18 ± 2.58 mm and a wall thickness of 3.98 ± 1.01 mm on one perimeter with uniform diameter across different sections (1.40 ± 1.10 μm average). Oxygen plasma treatment with 30-50 W for 5 min significantly improved the hydrophilicity of the PCL macrostructures, proving a suitable scaffold for in vitro cell cultures. Additionally, 3D images obtained by synchrotron radiation X-ray tomographic microscopy (SRXTM) presented cell penetration and cell growth within the scaffolds. This breakthrough in 3D electrospinning surpasses current scaffold fabrication limitations, opening new possibilities in various fields.
Collapse
Affiliation(s)
- Atchara Chinnakorn
- School
of Physics, Institute of Science, Suranaree
University of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Yanawarut Soi-Ngoen
- School
of Physics, Institute of Science, Suranaree
University of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Oratai Weeranantanapan
- School
of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center
of Excellence on Advanced Functional Materials (CoE-AFM), Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | - Santi Maensiri
- School
of Physics, Institute of Science, Suranaree
University of Technology, Nakhon
Ratchasima 30000, Thailand
- Center
of Excellence on Advanced Functional Materials (CoE-AFM), Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kriettisak Srisom
- Synchrotron
Light Research Institute, Muang, Nakhon Ratchasima 30000, Thailand
| | | | - Norbert Radacsi
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Edinburgh EH9 3FB, U.K.
| | - Wiwat Nuansing
- School
of Physics, Institute of Science, Suranaree
University of Technology, Nakhon
Ratchasima 30000, Thailand
- Center
of Excellence on Advanced Functional Materials (CoE-AFM), Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
3
|
Altundag Ö, Öteyaka MÖ, Çelebi-Saltik B. Co- and Triaxial Electrospinning for Stem Cell-based Bone Regeneration. Curr Stem Cell Res Ther 2024; 19:865-878. [PMID: 37594104 DOI: 10.2174/1574888x18666230818094216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Bone tissue is composed of organic minerals and cells. It has the capacity to heal for certain minor damages, but when the bone defects surpass the critical threshold, they need fixing. Bone regeneration through natural and synthetic biodegradable materials requires various steps, such as manufacturing methods and materials selection. A successful biodegradable bone graft should have a high surface area/ volume ratio, strength, and a biocompatible, porous structure capable of promoting cell adhesion, proliferation, and differentiation. Considering these requirements, the electrospinning technique is promising for creating functional nano-sized scaffolds. The multi-axial methods, such as coaxial and triaxial electrospinning, are the most popular techniques to produce double or tri-layered scaffolds, respectively. Recently, stem cell culture on scaffolds and the application of osteogenic differentiation protocols on these scaffolds have opened new possibilities in the field of biomaterials research. This review discusses an overview of the progress in coaxial and triaxial technology through biodegradable composite bone materials. The review also carefully elaborates the osteogenic differentiation using stem cells and their performance with nano-sized scaffolds.
Collapse
Affiliation(s)
- Özlem Altundag
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Mustafa Özgür Öteyaka
- Department of Electronic and Automation, Mechatronic Program, Eskisehir Vocational School, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
AL-Rajabi MM, Almanassra IW, Khalil AKA, Atieh MA, Laoui T, Khalil KA. Facile Coaxial Electrospinning Synthesis of Polyacrylonitrile/Cellulose Acetate Nanofiber Membrane for Oil-Water Separations. Polymers (Basel) 2023; 15:4594. [PMID: 38232019 PMCID: PMC10708555 DOI: 10.3390/polym15234594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Oil-contaminated water and industrial oily wastewater discharges have adversely affected aquatic ecosystems and human safety. Membrane separation technology offers a promising solution for effective oil-water separation. Thus, a membrane with high surface area, hydrophilic-oleophobic properties, and stability is a promising candidate. Electrospinning, a straightforward and efficient process, produces highly porous polymer-based membranes with a vast surface area and stability. The main objective of this study is to produce hydrophilic-oleophobic polyacrylonitrile (PAN) and cellulose acetate (CA) nanofibers using core-shell electrospinning. Incorporating CA into the shell of the nanofibers enhances the wettability. The core PAN polymer improves the electrospinning process and contributes to the hydrophilicity-oleophobicity of the produced nanofibers. The PAN/CA nanofibers were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, and surface-wetting behavior. The resulting PAN/cellulose nanofibers exhibited significantly improved surface-wetting properties, demonstrating super-hydrophilicity and underwater superoleophobicity, making them a promising choice for oil-water separation. Various oils, including gasoline, diesel, toluene, xylene, and benzene, were employed in the preparation of oil-water mixture solutions. The utilization of PAN/CA nanofibers as a substrate proved to be highly efficient, confirming exceptional separation efficiency, remarkable stability, and prolonged durability. The current work introduces an innovative single-step fabrication method of composite nanofibers, specially designed for efficient oil-water separation. This technology exhibits significant promise for deployment in challenging situations, offering excellent reusability and a remarkable separation efficiency of nearly 99.9%.
Collapse
Affiliation(s)
- Maha Mohammad AL-Rajabi
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, UniMAP, Arau 02600, Perlis, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, UniMAP, Arau 02600, Perlis, Malaysia
| | - Ismail W. Almanassra
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
| | - Abdelrahman K. A. Khalil
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
| | - Muataz Ali Atieh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tahar Laoui
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
- Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khalil Abdelrazek Khalil
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
- Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
5
|
Tang M, Xu K, Shang H, Li X, He X, Ke L, Xie M, Zhou Z, Liu C, Du S, Wang Y, Gao J, Xu H. Biomineralization of bone-like hydroxyapatite to upgrade the mechanical and osteoblastic performances of poly(lactic acid) scaffolds. Int J Biol Macromol 2023; 226:1273-1283. [PMID: 36442566 DOI: 10.1016/j.ijbiomac.2022.11.240] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Biomimetic mineralization of high-strength apatite structure essentially relies on mimicking the inorganic building blocks of naturally occurring bones. However, conventional routes still have substantial function gaps in providing precision control over the geometrical dimensions and crystalline morphology of biomineralized apatite. Herein, we conceived the concept of microwave-assisted biomineralization (MAB) to customize 1D hydroxyapatite nanowhiskers (HANWs) at graphene templates, rendering the formation of graphene-hydroxyapatite (Gr-HA) nanohybrids. The HANWs essentially resembled bone apatite in elemental composition (Ca/P = 1.74), diameter (~20 nm), crystallinity (63 %), and rodlike geometry (aspect ratio of ~6). The Gr-HA nanohybrids were uniformly incorporated into poly(lactic acid) (PLA) microfibers (~1 μm) by electrospinning, engendering fibrous membranes with a set of Gr-HA loadings (10, 20 and 30 wt%). Intimate interactions were generated between Gr-HA and PLA matrix, contributing to significant promotion of the mechanical properties for PLA composite membranes. For example, the yield strength and elastic modulus of the PLA composite membranes loaded with 30 wt% Gr-HA achieved 5.4 and 66.4 MPa, increasing nearly 182 % and over 94 % compared to those of pure PLA, respectively. Moreover, the bone-like HANWs endowed PLA membranes with excellent cytocompatibility and good bioactivity, as demonstrated by over 38 % increase in cell viability and rapid apatite formation in mineral solution. The impressive combination of mechanical properties and biological characteristics make the PLA/Gr-HA scaffolds promising for guided tissue/bone regeneration therapy.
Collapse
Affiliation(s)
- Mengke Tang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Keke Xu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Han Shang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinyu Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Minghui Xie
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Zheng Zhou
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Changhui Liu
- School of Low-carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Shengyang Du
- Department of Orthopedics, Xuzhou First People's Hospital, Xuzhou 221002, China
| | - Yanqing Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China.
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
6
|
Chen J, Sun J, Luo M, Li Y, Wang Z, Wang Y. As(III) oxidation and kinetic analysis by Herminiimonas arsenicoxydans-loaded electrospinning activated carbon fiber biofilms. CHEMOSPHERE 2022; 308:136479. [PMID: 36152830 DOI: 10.1016/j.chemosphere.2022.136479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
In this study, an integrated and assembled recyclable biofilm material was prepared by loading Herminiimonas arsenicoxydans (H. arsenicoxydans) onto electrospun biomass-activated carbon nanofibers (denoted as H. arsenicoxydans-BACFs films). The H. arsenicoxydans-BACFs biofilms showed an approximately 50% increase in As(III) removal rate for 50 mg/L during a 48-h incubation. Furthermore, the biofilms demonstrated satisfactory biocompatibility, ideal catalytic As(III) oxidation and excellent recyclability in cyclic reactions (at least 5 runs). The improved catalytic efficiency is mainly due to a large amount of biomass accumulation and biofilms formation on the surface of the BACF films. More important, the BACF films as an electron transport medium from an oxidized state to a reduced state promote the electron transfer of As(III) oxidation of H. arsenicoxydans. The dual factors can synergistically promote As(III) oxidation efficiency. The oxidation process of As(III) in the H. arsenicoxydans-BACFs composite biofilm reactor was more in line with the first-order kinetic equation, and the oxidation rate of As(III) by H. arsenicoxydans-BACF0.4 was the fastest. The H. arsenicoxydans-BACF films outperformed conventional catalytic materials and could represent biomaterials for the remediation of As(III)-contaminated wastewater.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, PR China
| | - Jingjing Sun
- Xiamen Environmental Energy Investment & Development Co., Ltd., Xiamen, 361005, PR China
| | - Mingyu Luo
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, PR China
| | - Yixin Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, PR China
| | - Zhaoshou Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, PR China.
| |
Collapse
|
7
|
Jiang W, Zhao P, Song W, Wang M, Yu DG. Electrospun Zein/Polyoxyethylene Core-Sheath Ultrathin Fibers and Their Antibacterial Food Packaging Applications. Biomolecules 2022; 12:1110. [PMID: 36009003 PMCID: PMC9405609 DOI: 10.3390/biom12081110] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
The purpose of this work is to develop a novel ultrathin fibrous membrane with a core-sheath structure as antibacterial food packaging film. Coaxial electrospinning was exploited to create the core-sheath structure, by which the delivery regulation of the active substance was achieved. Resveratrol (RE) and silver nanoparticles (AgNPs) were loaded into electrospun zein/polyethylene oxide ultrathin fibers to ensure a synergistic antibacterial performance. Under the assessments of a scanning electron microscope and transmission electron microscope, the ultrathin fiber was demonstrated to have a fine linear morphology, smooth surface and obvious core-sheath structure. X-ray diffraction and Fourier transform infrared analyses showed that RE and AgNPs coexisted in the ultrathin fibers and had good compatibility with the polymeric matrices. The water contact angle experiments were conducted to evaluate the hydrophilicity and hygroscopicity of the fibers. In vitro dissolution tests revealed that RE was released in a sustained manner. In the antibacterial experiments against Staphylococcus aureus and Escherichia coli, the diameters of the inhibition zone of the fiber were 8.89 ± 0.09 mm and 7.26 ± 0.10 mm, respectively. Finally, cherry tomatoes were selected as the packaging object and packed with fiber films. In a practical application, the fiber films effectively reduced the bacteria and decreased the quality loss of cherry tomatoes, thereby prolonging the fresh-keeping period of cherry tomatoes to 12 days. Following the protocols reported here, many new food packaging films can be similarly developed in the future.
Collapse
Affiliation(s)
- Wenlai Jiang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Ping Zhao
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Wenliang Song
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
8
|
Liu Y, Chen X, Gao Y, Yu DG, Liu P. Elaborate design of shell component for manipulating the sustained release behavior from core–shell nanofibres. J Nanobiotechnology 2022; 20:244. [PMID: 35643572 PMCID: PMC9148457 DOI: 10.1186/s12951-022-01463-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background The diversified combination of nanostructure and material has received considerable attention from researchers to exploit advanced functional materials. In drug delivery systems, the hydrophilicity and sustained–release drug properties are in opposition. Thus, difficulties remain in the simultaneous improve sustained–release drug properties and increase the hydrophilicity of materials. Methods In this work, we proposed a modified triaxial electrospinning strategy to fabricate functional core–shell fibres, which could elaborate design of shell component for manipulating the sustained-release drug. Cellulose acetate (CA) was designed as the main polymeric matrix, whereas polyethylene glycol (PEG) was added as a hydrophilic material in the middle layer. Cur, as a model drug, was stored in the inner layer. Results Scanning electron microscopy (SEM) results and transmission electron microscopy (TEM) demonstrated that the cylindrical F2–F4 fibres had a clear core–shell structure. The model drug Cur in fibres was verified in an amorphous form during the X-ray diffraction (XRD) patterns, and Fourier transformed infrared spectroscopy (FTIR) results indicated good compatibility with the CA matrix. The water contact angle test showed that functional F2–F4 fibres had a high hydrophilic property in 120 s and the control sample F1 needed over 0.5 h to obtain hydrophilic property. In the initial stage of moisture intrusion into fibres, the quickly dissolved PEG component guided the water molecules and rapidly eroded the internal structure of functional fibres. The good hydrophilicity of F2–F4 fibres brought relatively excellent swelling rate around 4600%. Blank outer layer of functional F2 fibres with 1% PEG created an exciting opportunity for providing a 96 h sustained-release drug profile, while F3 and F4 fibres with over 3% PEG provided a 12 h modified drug release profile to eliminate tailing–off effect. Conclusion Here, the functional F2–F4 fibres had been successfully produced by using the advanced modified triaxial electrospinning nanotechnology with different polymer matrices. The simple strategy in this work has remarkable potential to manipulate hydrophilicity and sustained release of drug carriers, meantime it can also enrich the preparation approaches of functional nanomaterials. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01463-0.
Collapse
|
9
|
Guo S, Jiang W, Shen L, Zhang G, Gao Y, Yang Y, Yu DG. Electrospun Hybrid Films for Fast and Convenient Delivery of Active Herb Extracts. MEMBRANES 2022; 12:membranes12040398. [PMID: 35448368 PMCID: PMC9031211 DOI: 10.3390/membranes12040398] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022]
Abstract
Herb medicines are popular for safe application due to being a source of natural herbs. However, how to deliver them in an efficacious and convenient manner poses a big challenge to researchers. In this study, a new concept is demonstrated that the electrospun polymer-based hybrid films can be a platform for promoting the delivery of a mixture of active herb extract, i.e., Lianhua Qingwen Keli (LQK), also a commercial traditional Chinese patent medicine. The LQK can be co-dissolved with the filament-forming polymeric polyvinylpyrrolidone K60 and a sweeter sucralose to prepare an electrospinnable solution. A handheld electrospinning apparatus was explored to transfer the solution into solid nanofibers, i.e., the LQK-loaded medicated films. These films were demonstrated to be composed of linear nanofibers. A puncher was utilized to transfer the mat into circular membrane a diameter of 15 mm. Two self-created methods were developed for disclosing the dissolution performances of the electrospun mats. Both the water droplet experiments and the wet paper (mimic tongue) experiments verified that the hybrid films can rapidly disintegrate when they encounter water and release the loaded LQK in an immediate manner. Based on the reasonable selections of polymeric excipients, the present protocols pave a way for delivering many types of active herb extracts in an effective and convenient manner.
Collapse
Affiliation(s)
- Shiri Guo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Wenlai Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Liangfei Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Gaoyi Zhang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yiman Gao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
- Correspondence: (Y.Y.); (D.-G.Y.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
- Correspondence: (Y.Y.); (D.-G.Y.)
| |
Collapse
|
10
|
Tertyshnaya YV, Karpova SG, Podzorova MV, Khvatov AV, Moskovskiy MN. Thermal Properties and Dynamic Characteristics of Electrospun Polylactide/Natural Rubber Fibers during Disintegration in Soil. Polymers (Basel) 2022; 14:polym14051058. [PMID: 35267881 PMCID: PMC8914975 DOI: 10.3390/polym14051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
In this work, PLA/NR electrospun fibers were used as substrates for growing basil. Thermal characteristics of initial samples and after 60 and 220 days of degradation were determined using differential scanning calorimetry. In the process of disintegration, the melting and glass transition temperatures in PLA/NR composites decreased, and in PLA fibers these values increased slightly. TGA analysis in an argon environment confirmed the effect of NR on the thermal degradation of PLA/NR fibers. After exposure to the soil for 220 days, the beginning of degradation shifted to the low-temperature region. The dynamic characteristics of the fibers were determined by the EPR method. A decrease in the correlation time of the probe-radical in comparison with the initial samples was shown. FTIR spectroscopy was used to analyze the chemical structure before and after degradation in soil. In PLA/NR fibrous substrates, there was a decrease in the intensity of the bands corresponding to the PLA matrix and the appearance of N-H C-N groups due to biodegradation by soil microorganisms.
Collapse
Affiliation(s)
- Yulia V. Tertyshnaya
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (S.G.K.); (M.V.P.); (A.V.K.)
- Perspective Composite Materials and Technologies Laboratory, Plekhanov Russian University of Economics, 36 Stremyanniy, 117997 Moscow, Russia
- Federal Scientific Agroengineering Center VIM, 1st Institutskiy Proezd, 5, 109428 Moscow, Russia;
- Correspondence: ; Tel.: +7-495-939-71-86
| | - Svetlana G. Karpova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (S.G.K.); (M.V.P.); (A.V.K.)
| | - Maria V. Podzorova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (S.G.K.); (M.V.P.); (A.V.K.)
- Perspective Composite Materials and Technologies Laboratory, Plekhanov Russian University of Economics, 36 Stremyanniy, 117997 Moscow, Russia
- Federal Scientific Agroengineering Center VIM, 1st Institutskiy Proezd, 5, 109428 Moscow, Russia;
| | - Anatoliy V. Khvatov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (S.G.K.); (M.V.P.); (A.V.K.)
| | - Maksim N. Moskovskiy
- Federal Scientific Agroengineering Center VIM, 1st Institutskiy Proezd, 5, 109428 Moscow, Russia;
| |
Collapse
|