1
|
Zhang X, Feng P, Liu X, Bu C, Wang K, Qu H. Investigation on the Thermal Decomposition Behavior of Molybdenum Trioxide Precursor. MATERIALS (BASEL, SWITZERLAND) 2025; 18:165. [PMID: 39795810 PMCID: PMC11722053 DOI: 10.3390/ma18010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
The ultrafine MoO3 powders were prepared by the combination of centrifugal spray drying and calcination in this work. The thermal decomposition behavior of the spherical precursor was studied. The phase constituents, morphologies, particle size, and specific surface areas of MoO3 powders were characterized at different temperatures. It is found that the decomposition of the precursor is subjected to five stages, and forms different intermediate products, including (NH4)8Mo10O34, (NH4)2Mo3O10, (NH4)2Mo4O13, h-MoO3, and the final product α-MoO3. Moreover, the decomposition rate equation is established based on the thermal decomposition kinetic parameters of the precursor. With an increase in decomposition temperature, the morphology changes from unclear boundary particles to dispersed flake particles, and the flaky particles exhibit larger sizes, higher crystallinity, and better dispersion, which can be attributed to the mass transfer of gaseous MoO3 products. Additionally, the MoO3 particle size decreases progressively, and the specific surface area increases and then decreases. At 500 °C, it can achieve ultrafine flaky MoO3 powder with the size of thick sheets, with a thickness of about 300 nm and a length of about 1-3 μm. This research can offer an innovative strategy for preparing ultrafine MoO3 powder.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Metallurgy and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
- Jinduicheng Molybdenum Co., Ltd., Xi’an 710077, China
| | - Pengfa Feng
- Jinduicheng Molybdenum Co., Ltd., Xi’an 710077, China
- Shaanxi “Four Bodies and One Union” University-Enterprise Jiont Research Center for Advanced Molybdenum-Based Functional Materials, Xi’an 710077, China
| | - Xuyang Liu
- Jinduicheng Molybdenum Co., Ltd., Xi’an 710077, China
- Shaanxi “Four Bodies and One Union” University-Enterprise Jiont Research Center for Advanced Molybdenum-Based Functional Materials, Xi’an 710077, China
| | - Chunyang Bu
- Jinduicheng Molybdenum Co., Ltd., Xi’an 710077, China
- Shaanxi “Four Bodies and One Union” University-Enterprise Jiont Research Center for Advanced Molybdenum-Based Functional Materials, Xi’an 710077, China
| | - Kuaishe Wang
- School of Metallurgy and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
- National and Local Joint Engineering Research Center for Functional Materials Processing, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Hang Qu
- Jinduicheng Molybdenum Co., Ltd., Xi’an 710077, China
- Shaanxi “Four Bodies and One Union” University-Enterprise Jiont Research Center for Advanced Molybdenum-Based Functional Materials, Xi’an 710077, China
| |
Collapse
|
2
|
Kim J, Choi YJ, Park H, Yun HS. Fabrication of multifunctional alginate microspheres containing hydroxyapatite powder for simultaneous cell and drug delivery. Front Bioeng Biotechnol 2022; 10:827626. [PMID: 36017354 PMCID: PMC9395714 DOI: 10.3389/fbioe.2022.827626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Novel alginate-hydroxyapatite hybrid microspheres were developed for simultaneous delivery of drugs and cells as a multifunctional bone substitute for osteoporotic bone tissue regeneration. The microspheres were used to enhance osteogenesis and to carry and deliver quercetin, a representative phytoestrogen that controls bone tissue regeneration metabolism in osteoporosis patients, through sustained release over a long period. To overcome quercetin’s hydrophobicity and low solubility in aqueous environments, we added it to the surface of hydroxyapatite (HAp) nanoparticles before mixing them with an alginate solution. The homogeneous distribution of the HAp nanoparticles in the alginate solution was essential for preventing nozzle clogging and achieving successfully fabricated hybrid microspheres. To this end, a 3D ultrasonic treatment was applied. Electrostatic microencapsulation was then used to fabricate hybrid alginate-HAp microspheres containing quercetin and cells. The microspheres were approximately 290.7 ± 42.5 μm (aspect ratio of 1). The sustained release of quercetin was confirmed during a test period of 20 weeks. The cells in the hybrid microspheres maintained good cell viability during the entire testing period, and their osteogenic differentiation behavior was boosted by the presence of HAp. Thus, osteogenic differentiation could be greatly improved by adding quercetin. These novel multi-biofunctional hybrid microspheres have great potential for the regeneration of osteoporotic bone tissue at indeterminate defect sites.
Collapse
Affiliation(s)
- Jueun Kim
- Department of Advanced Materials Engineering, University of Science & Technology (UST), Daejeon, South Korea
- Ceramic Materials Division, Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon, South Korea
| | - Yeong-Jin Choi
- Ceramic Materials Division, Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon, South Korea
| | - Honghyun Park
- Ceramic Materials Division, Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon, South Korea
- *Correspondence: Honghyun Park, ; Hui-suk Yun,
| | - Hui-suk Yun
- Department of Advanced Materials Engineering, University of Science & Technology (UST), Daejeon, South Korea
- Ceramic Materials Division, Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon, South Korea
- *Correspondence: Honghyun Park, ; Hui-suk Yun,
| |
Collapse
|
3
|
Huang Y, Yan S, Zhang S, Yin Q, Chen X, Wu WD. Spray dried hydroxyapatite-based supraparticles with uniform and controllable size and morphology. Colloids Surf B Biointerfaces 2022; 217:112610. [PMID: 35700565 DOI: 10.1016/j.colsurfb.2022.112610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
This work aims to prepare uniform spray dried hydroxyapatite-based (SD HAP-based) supraparticles with controllable morphology via micro-fluidic spray drying. Sodium polyacrylate (PAAS) and sodium chloride (NaCl) were used to prepare the precursor suspensions by regulating the inter-particle repulsive forces and electrostatic shielding effect, respectively. The particle size (D50) and zeta potential of the suspension were highly associated with the mass ratio of HAP to PAAS (mH/mP) and the NaCl concentration (CNaCl), which further had significant effect on the permeability (k) of the droplet shell formed during spray drying and ultimately the supraparticle morphology. D50 ˂ 2 µm and absolute zeta potential ˃ 20 mV, obtained when mH/mP ˂ 100 under low CNaCl, rendered ultralow k and consequently deformed supraparticles; Whereas D50 ˃ 2 µm and absolute zeta potential ˂ 20 mV, achieved by decreasing PAAS amount, i.e. mH/mP ≥ 100 or improving CNaCl to efficiently screen surface net charge of HAP, high k and spherical supraparticles were thus preferentially formed.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shen Yan
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shengyu Zhang
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Quanyi Yin
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Xiaodong Chen
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Winston Duo Wu
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
4
|
Huang SM, Liu SM, Ko CL, Chen WC. Advances of Hydroxyapatite Hybrid Organic Composite Used as Drug or Protein Carriers for Biomedical Applications: A Review. Polymers (Basel) 2022; 14:polym14050976. [PMID: 35267796 PMCID: PMC8912323 DOI: 10.3390/polym14050976] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Hydroxyapatite (HA), especially in the form of HA nanoparticles (HANPs), has excellent bioactivity, biodegradability, and osteoconductivity and therefore has been widely used as a template or additives for drug delivery in clinical applications, such as dentistry and orthopedic repair. Due to the atomically anisotropic distribution on the preferred growth of HA crystals, especially the nanoscale rod-/whisker-like morphology, HA can generally be a good candidate for carrying a variety of substances. HA is biocompatible and suitable for medical applications, but most drugs carried by HANPs have an initial burst release. In the adsorption mechanism of HA as a carrier, specific surface area, pore size, and porosity are important factors that mainly affect the adsorption and release amounts. At present, many studies have developed HA as a drug carrier with targeted effect, porous structure, and high porosity. This review mainly discusses the influence of HA structures as a carrier on the adsorption and release of active molecules. It then focuses on the benefits and effects of different types of polymer-HA composites to re-examine the proteins/drugs carry and release behavior and related potential clinical applications. This literature survey can be divided into three main parts: 1. interaction and adsorption mechanism of HA and drugs; 2. advantages and application fields of HA/organic composites; 3. loading and drug release behavior of multifunctional HA composites in different environments. This work also presents the latest development and future prospects of HA as a drug carrier.
Collapse
Affiliation(s)
- Ssu-Meng Huang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
| | - Chia-Ling Ko
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Zhang B, Chai Y, Huang K, Wei X, Mei Z, Wu X, Dai H. Vancomycin Hydrochloride Loaded Hydroxyapatite Mesoporous Microspheres with Micro/Nano Surface Structure to Increase Osteogenic Differentiation and Antibacterial Ability. J Biomed Nanotechnol 2021; 17:1668-1678. [PMID: 34544543 DOI: 10.1166/jbn.2021.3128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As infection induced by the implant will lead to operation failure, the implant material must be endowed with certain antibacterial properties. Hydroxyapatite (HA) mesoporous microspheres have been widely used in bone repair due to their advantages, including simple synthesis, good osteogenic properties and drug loading capacity. In this study, vancomycin hydrochloride-loaded mesoporous hydroxyapatite microspheres with micro/nanosurface structures were synthesized to increase osteogenic differentiation and antibacterial ability. Phytic acid (IP6) was used as a template to prepare mesoporous hydroxyapatite microspheres composed of fibres, flakes and smooth surfaces by the hydrothermal homogeneous precipitation method, and the corresponding specific surface areas were 65.20 m²/g, 75.13 m²/g and 71.27 m²/g, respectively. Vancomycin hydrochloride (Van) was used as the drug model to study the drug loading and release characteristics of the microspheres, as well as the in vitro antibacterial properties after treatment. In addition, during cocultivation with MC3T3-E1 preosteoblasts, HA microspheres assembled via flakes exhibited better cell compatibility, which promoted cell proliferation, alkaline phosphatase (ALP) activity, and the formation of calcium nodules and increased the expression of osteogenic differentiation-related proteins such as Runx-2, osteopontin (OPN) and collagen I (COL I). These results indicated that the HA microspheres prepared in this experiment have broad application prospects in drug delivery systems and bone repair.
Collapse
Affiliation(s)
- Beizhi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China
| | - Yunhui Chai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China
| | - Kai Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China
| | - Xuejie Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China
| | - Zhiqing Mei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China
| |
Collapse
|
6
|
Yang X, Tian Z, Guo K, Lu T, Ji J, Hao S, Xiao S. Preparation and mechanism of hydroxyapatite hollow microspheres with different surface charge by biomimetic method. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:47. [PMID: 32390082 DOI: 10.1007/s10856-020-06385-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
To meet the different application requirements in various fields, hydroxyapatite (HA) hollow microspheres with different surface charge were synthesized successfully by biomimetic method using Ca(NO3)2·4H2O and (NH4)2HPO4 in the presence of polyethylene glycol (PEG). Scanning electron microscopy (SEM), High-resolution TEM (HRTEM), X-ray powder diffraction (XRD), and Zeta PALS were used to characterize the obtained samples. The results indicated that the concentration of PEG and temperature significantly affect the morphology of the obtained samples. After incubation for 5 d, the HA hollow microspheres with positive surface charge, HA spherical nanoparticles with surface charge close to zero and calcium deficiency HA (d-HA) hollow microspheres with negative surface charge were obtained respectively in the presence of 5% PEG, 6% PEG and 7% PEG at 15 °C. Brunauer-Emmett-Teller (BET) revealed that the specific surface area of HA hollow microspheres reached 98.50 m2/g, while that of HA spherical nanoparticles were only 4.12 m2/g, hollow microspheres show a better application prospect. The possible formation mechanism was also discussed. Ca/P molar ratio >1.67, the surface charge of HA hollow microspheres inclines to be positive. Ca/P molar ratio <1.67, the surface charge of d-HA hollow microspheres tends to be negative.
Collapse
Affiliation(s)
- Xiuying Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
- Medical College, Yunnan University of Bussiness Management, Yunnan, 650106, China
| | - Zhenzhen Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Kebing Guo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Ting Lu
- Chongqing Research Academy of Environmental Science, Chongqing, 401320, China
| | - Jingou Ji
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Shangyou Xiao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
7
|
Andronescu E, Predoi D, Neacsu IA, Paduraru AV, Musuc AM, Trusca R, Oprea O, Tanasa E, Vasile OR, Nicoara AI, Surdu AV, Iordache F, Birca AC, Iconaru SL, Vasile BS. Photoluminescent Hydroxylapatite: Eu 3+ Doping Effect on Biological Behaviour. NANOMATERIALS 2019; 9:nano9091187. [PMID: 31443424 PMCID: PMC6780766 DOI: 10.3390/nano9091187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/10/2019] [Accepted: 08/18/2019] [Indexed: 12/15/2022]
Abstract
Luminescent europium-doped hydroxylapatite (EuXHAp) nanomaterials were successfully obtained by co-precipitation method at low temperature. The morphological, structural and optical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), UV-Vis and photoluminescence (PL) spectroscopy. The cytotoxicity and biocompatibility of EuXHAp were also evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)) assay, oxidative stress assessment and fluorescent microscopy. The results reveal that the Eu3+ has successfully doped the hexagonal lattice of hydroxylapatite. By enhancing the optical features, these EuXHAp materials demonstrated superior efficiency to become fluorescent labelling materials for bioimaging applications.
Collapse
Affiliation(s)
- Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Daniela Predoi
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, 077125 Magurele, Romania
| | - Ionela Andreea Neacsu
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andrei Viorel Paduraru
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adina Magdalena Musuc
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Ilie Murgulescu Institute of Physical Chemistry, 060021 Bucharest, Romania
| | - Roxana Trusca
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ovidiu Oprea
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Eugenia Tanasa
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Otilia Ruxandra Vasile
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adrian Ionut Nicoara
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adrian Vasile Surdu
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Florin Iordache
- Faculty of Veterinary Medicine, Department of Biochemistry, University of Agronomic Science and Veterinary Medicine, 011464 Bucharest, Romania
| | - Alexandra Catalina Birca
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Simona Liliana Iconaru
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, 077125 Magurele, Romania
| | - Bogdan Stefan Vasile
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania.
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania.
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania.
| |
Collapse
|
8
|
Release Behavior of Folic Acid Grafted Hollow Hydroxyapatite as Drug Carrier. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/9562437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Based on the formation of carbodiimide compounds between carboxyl and primary amines, hollow microspheres arising from the folic acid (folate-FA) grafted onto the surface of the modified hydroxyapatite were successfully prepared. The hollow morphology and composition of the FA-grafted hydroxyapatite microspheres were confirmed by scanning electron microscopy (SEM) and other characterizations. Brunauer-Emmett-Teller (BET) assay revealed the specific surface area and average pore size of the microspheres were 34.58m2/g and 17.80 nm, respectively. As a drug carrier, the kinetic investigation of doxorubicin (DOX) loaded shows that the adsorbed behavior of drug on the adsorbent is more suitable to be described with pseudo-first-order model. Furthermore, the release rate can reach 83% at pH 5.7, which is greater than the release of 39% at pH 7.4, indicating an excellent performance of controlled drug release for response pH. The release mechanism of DOX coincides with Fickian diffusion as a result of Korsmeyer-Peppas model analysis and the release phenomena can be well explained by Fickian diffusion second law.
Collapse
|
9
|
Preparation of Polyacrylate Hollow Microspheres via Facile Spray Drying. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9020228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polyacrylate microspheres with a hollow structure were prepared by a facile spray drying method. The effects of spray drying process parameters, including inlet temperature, atomizer rotational speed, and feed speed, on the particle size, bulk density, and morphology of the resultant polyacrylate hollow microspheres were investigated and discussed. The mechanism for the formation of the polyacrylate hollow microspheres was proposed. This facile and scalable method for preparing hollow polymer microspheres is expected to be valuable to prepare various polymer hollow structures for widespread application.
Collapse
|
10
|
Sakuma H, Tamura K, Minagawa K. “Doughnut”-like Clay Microparticles Fabricated Using a Hybrid Method of Spray Drying and Centrifugal Disc Atomization. CHEM LETT 2018. [DOI: 10.1246/cl.170891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroshi Sakuma
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenji Tamura
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kazumi Minagawa
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
11
|
Qin T, Zhang P, Wani IH, Han Y, Leifer K, Nikolajeff F, Engqvist H. A general strategy for template-free and low-cost synthesis of inorganic hollow spheres. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.06.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:166-72. [DOI: 10.1016/j.msec.2016.01.055] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/17/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022]
|
13
|
Ding GJ, Zhu YJ, Qi C, Sun TW, Wu J, Chen F. Yolk-Shell Porous Microspheres of Calcium Phosphate Prepared by Using Calcium L-Lactate and Adenosine 5'-Triphosphate Disodium Salt: Application in Protein/Drug Delivery. Chemistry 2015; 21:9868-76. [PMID: 25982303 DOI: 10.1002/chem.201406547] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 11/07/2022]
Abstract
A facile and environmentally friendly approach has been developed to prepare yolk-shell porous microspheres of calcium phosphate by using calcium L-lactate pentahydrate (CL) as the calcium source and adenosine 5'-triphosphate disodium salt (ATP) as the phosphate source through the microwave-assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk-shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk-shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as-prepared yolk-shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH-responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk-shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery.
Collapse
Affiliation(s)
- Guan-Jun Ding
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (P.R. China), Fax: (+86) 21-52413122
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (P.R. China), Fax: (+86) 21-52413122.
| | - Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (P.R. China), Fax: (+86) 21-52413122
| | - Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (P.R. China), Fax: (+86) 21-52413122
| | - Jin Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (P.R. China), Fax: (+86) 21-52413122
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (P.R. China), Fax: (+86) 21-52413122
| |
Collapse
|
14
|
Wei J, Shi J, Wu Q, Yang L, Cao S. Hollow hydroxyapatite/polyelectrolyte hybrid microparticles with controllable size, wall thickness and drug delivery properties. J Mater Chem B 2015; 3:8162-8169. [DOI: 10.1039/c5tb01268f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hollow hydroxyapatite/polyelectrolyte microparticles with controllable size, wall thickness and drug delivery properties have been fabricated via the green hydrothermal method and the LbL self-assembly technique.
Collapse
Affiliation(s)
- Jing Wei
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- China
| | - Jun Shi
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- China
| | - Qiong Wu
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- China
| | - Liu Yang
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- China
| | - Shaokui Cao
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- China
| |
Collapse
|
15
|
Lin K, Wu C, Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater 2014; 10:4071-102. [PMID: 24954909 DOI: 10.1016/j.actbio.2014.06.017] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 01/02/2023]
Abstract
Calcium phosphate (CaP) materials have a wide range of applications, including biomaterials, adsorbents, chemical engineering materials, catalysts and catalyst supports and mechanical reinforcements. The size and shape of CaP crystals and aggregates play critical roles in their applications. The main inorganic building blocks of human bones and teeth are nanocrystalline CaPs; recently, much progress has been made in the application of CaP nanocrystals and their composites for clinical repair of damaged bone and tooth. For example, CaPs with special micro- and nanostructures can better imitate the biomimetic features of human bone and tooth, and this offers significantly enhanced biological performances. Therefore, the design of CaP nano-/microcrystals, and the shape and hierarchical structures of CaPs, have great potential to revolutionize the field of hard tissue engineering, starting from bone/tooth repair and augmentation to controlled drug delivery devices. Previously, a number of reviews have reported the synthesis and properties of CaP materials, especially for hydroxyapatite (HAp). However, most of them mainly focused on the characterizations and physicochemical and biological properties of HAp particles. There are few reviews about the control of particle size and size distribution of CaPs, and in particular the control of nano-/microstructures on bulk CaP ceramic surfaces, which is a big challenge technically and may have great potential in tissue engineering applications. This review summarizes the current state of the art for the synthesis of CaP crystals with controlled sizes from the nano- to the macroscale, and the diverse shapes including the zero-dimensional shapes of particles and spheres, the one-dimensional shapes of rods, fibers, wires and whiskers, the two-dimensional shapes of sheets, disks, plates, belts, ribbons and flakes and the three-dimensional (3-D) shapes of porous, hollow, and biomimetic structures similar to biological bone and tooth. In addition, this review will also summarize studies on the controlled formation of nano-/microstructures on the surface of bulk ceramics, and the preparation of macroscopical bone grafts with 3-D architecture nano-/microstructured surfaces. Moreover, the possible directions of future research and development in this field, such as the detailed mechanisms behind the size and shape control in various strategies, the importance of theoretical simulation, self-assembly, biomineralization and sacrificial precursor strategies in the fabrication of biomimetic bone-like and enamel-like CaP materials are proposed.
Collapse
Affiliation(s)
- Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| |
Collapse
|
16
|
Chandanshive BB, Rai P, Rossi AL, Ersen O, Khushalani D. Synthesis of hydroxyapatite nanotubes for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2981-6. [DOI: 10.1016/j.msec.2013.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 02/20/2013] [Accepted: 03/14/2013] [Indexed: 01/25/2023]
|
17
|
Bohner M, Tadier S, van Garderen N, de Gasparo A, Döbelin N, Baroud G. Synthesis of spherical calcium phosphate particles for dental and orthopedic applications. BIOMATTER 2013; 3:e25103. [PMID: 23719177 PMCID: PMC3749799 DOI: 10.4161/biom.25103] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/17/2013] [Accepted: 05/21/2013] [Indexed: 11/19/2022]
Abstract
Calcium phosphate materials have been used increasingly in the past 40 years as bone graft substitutes in the dental and orthopedic fields. Accordingly, numerous fabrication methods have been proposed and used. However, the controlled production of spherical calcium phosphate particles remains a challenge. Since such particles are essential for the synthesis of pastes and cements delivered into the host bone by minimally-invasive approaches, the aim of the present document is to review their synthesis and applications. For that purpose, production methods were classified according to the used reagents (solutions, slurries, pastes, powders), dispersion media (gas, liquid, solid), dispersion tools (nozzle, propeller, sieve, mold), particle diameters of the end product (from 10 nm to 10 mm), and calcium phosphate phases. Low-temperature calcium phosphates such as monetite, brushite or octacalcium phosphate, as well as high-temperature calcium phosphates, such as hydroxyapatite, β-tricalcium phosphate or tetracalcium phosphate, were considered. More than a dozen production methods and over hundred scientific publications were discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Gamal Baroud
- Laboratoire de Biomécanique; Département de Génie; Université de Sherbrooke; Sherbrooke, QC Canada
| |
Collapse
|
18
|
Hydroxyapatite Hierarchically Nanostructured Porous Hollow Microspheres: Rapid, Sustainable Microwave-Hydrothermal Synthesis by Using Creatine Phosphate as an Organic Phosphorus Source and Application in Drug Delivery and Protein Adsorption. Chemistry 2013; 19:5332-41. [DOI: 10.1002/chem.201203886] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 11/07/2022]
|
19
|
Feng D, Shi J, Wang X, Zhang L, Cao S. Hollow hybrid hydroxyapatite microparticles with sustained and pH-responsive drug delivery properties. RSC Adv 2013. [DOI: 10.1039/c3ra44609c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Qi C, Zhu YJ, Lu BQ, Zhao XY, Zhao J, Chen F. Hydroxyapatite nanosheet-assembled porous hollow microspheres: DNA-templated hydrothermal synthesis, drug delivery and protein adsorption. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm35280j] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|