1
|
Bazaei M, Honarvar B, Esfandiari N, Sajadian SA, Aboosadi ZA. Production of pazopanib hydrochloride nanoparticles (anti-kidney cancer drug) using a supercritical gas antisolvent (GAS) method. RSC Adv 2024; 14:39844-39857. [PMID: 39697250 PMCID: PMC11653517 DOI: 10.1039/d4ra07079h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Supercritical fluid-based methods have been receiving increasing popularity in the production of pharmaceutical nanoparticles due to their ability to control the size and distribution of the particles and offer high purity products. The gas anti-solvent method is one of the methods in which a supercritical fluid serves as an anti-solvent. The aim of this work is to develop pazopanib hydrochloride nanoparticles as an anti-cancer agent by the supercritical GAS method. For this purpose, nanoparticles were produced at different temperatures (313, 323 and 333 K), pressures (10, 13 and 16 MPa), and initial solute concentrations (12, 22 and 32 mg ml-1) employing the Box-Behnken design. The results showed that pressure had the most significant effect on the particle size. The average initial particle size of unprocessed pazopanib hydrochloride was about 37.5 ± 8.7 μm. The optimum process parameter values were determined to obtain the smallest particle size using the BBD method. The parameters were optimized at 320 K, 16 MPa, and 12.6 mg ml-1. The average particle size was 311.1 nm, close to the predicted value of 302.3 nm. FTIR analysis indicated that the chemical structure remained unaltered. Furthermore, DSC and XRD results confirmed the reduction in particle size.
Collapse
Affiliation(s)
- Majid Bazaei
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University Marvdasht Iran
| | - Bizhan Honarvar
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University Marvdasht Iran
| | - Nadia Esfandiari
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University Marvdasht Iran
| | - Seyed Ali Sajadian
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University Marvdasht Iran
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan Kashan 87317-53153 Iran
| | - Zahra Arab Aboosadi
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University Marvdasht Iran
| |
Collapse
|
2
|
Dias JL, Rebelatto EA, Hotza D, Bortoluzzi AJ, Lanza M, Ferreira SR. Production of quercetin-nicotinamide cocrystals by gas antisolvent (GAS) process. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
CO2 Utilization as Gas Antisolvent for the Pharmaceutical Micro and Nanoparticle Production: A Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Hriňová E, Skořepová E, Čerňa I, Královičová J, Kozlík P, Křížek T, Roušarová J, Ryšánek P, Šíma M, Slanař O, Šoóš M. Explaining dissolution properties of rivaroxaban cocrystals. Int J Pharm 2022; 622:121854. [PMID: 35623488 DOI: 10.1016/j.ijpharm.2022.121854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
The aim of this study was to improve rivaroxaban water-solubility by cocrystal preparation and to understand this process. The screening with water-soluble coformers was performed via both mechanochemical and solution-mediated techniques. Two cocrystals of rivaroxaban with malonic acid and oxalic acid were prepared, and the structure of the cocrystal with oxalic acid was solved. Both cocrystals exhibit improved dissolution properties. The mechanism of the supersaturation maintenance was studied by in-situ Raman spectroscopy. The transformation into rivaroxaban dihydrate was identified as the critical step in the improved dissolution properties of both cocrystals. Moreover, the transformation kinetics and solubilization effects of the coformers were identified as responsible for the differences in the dissolution behavior of the cocrystals. In-vivo experiments proved that the use of cocrystal instead of form I of free API helped to increase the bioavailability ofrivaroxaban.
Collapse
Affiliation(s)
- Erika Hriňová
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic.
| | - Eliška Skořepová
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic; Department of Structure Analysis, Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00 Praha 8, Czech Republic
| | - Igor Čerňa
- Zentiva, k.s., U Kabelovny 130, 10237 Prague 10, Czech Republic
| | - Jana Královičová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jaroslava Roušarová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Ryšánek
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Miroslav Šoóš
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic
| |
Collapse
|
5
|
Shirafkan A, Nowee SM, Kamali H. Optimal strategies for supercritical gas antisolvent (GAS) coprecipitation of pyrazinamide/PVP particles via response surface methodology. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
DUTT B, CHOUDHARY M, BUDHWAR V. A Brief Discussion of Multi-Component Organic Solids: Key Emphasis on Co-Crystallization. Turk J Pharm Sci 2022; 19:220-231. [DOI: 10.4274/tjps.galenos.2020.78700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Gas anti-solvent coprecipitation of pyrazinamide–PVP composite particles from mixed organic solvents using supercritical CO2: Effect of process parameters. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Kumar Bandaru R, Rout SR, Kenguva G, Gorain B, Alhakamy NA, Kesharwani P, Dandela R. Recent Advances in Pharmaceutical Cocrystals: From Bench to Market. Front Pharmacol 2021; 12:780582. [PMID: 34858194 PMCID: PMC8632238 DOI: 10.3389/fphar.2021.780582] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
The pharmacokinetics profile of active pharmaceutical ingredients (APIs) in the solid pharmaceutical dosage forms is largely dependent on the solid-state characteristics of the chemicals to understand the physicochemical properties by particle size, size distribution, surface area, solubility, stability, porosity, thermal properties, etc. The formation of salts, solvates, and polymorphs are the conventional strategies for altering the solid characteristics of pharmaceutical compounds, but they have their own limitations. Cocrystallization approach was established as an alternative method for tuning the solubility, permeability, and processability of APIs by introducing another compatible molecule/s into the crystal structure without affecting its therapeutic efficacy to successfully develop the formulation with the desired pharmacokinetic profile. In the present review, we have grossly focused on cocrystallization, particularly at different stages of development, from design to production. Furthermore, we have also discussed regulatory guidelines for pharmaceutical industries and challenges associated with the design, development and production of pharmaceutical cocrystals with commercially available cocrystal-based products.
Collapse
Affiliation(s)
- Ravi Kumar Bandaru
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| | - Smruti Rekha Rout
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| | - Gowtham Kenguva
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| |
Collapse
|
9
|
Vaksler Y, Benedis D, Dyshin A, Oparin R, Correia N, Capet F, Shishkina S, Kiselev M, Idrissi A. Spectroscopic characterization of single co-crystal of mefenamic acid and nicotinamide using supercritical CO2. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Utilization of supercritical CO2 gas antisolvent (GAS) for production of Capecitabine nanoparticles as anti-cancer drug: Analysis and optimization of the process conditions. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101465] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Liu G, Li J, Deng S. Applications of Supercritical Anti-Solvent Process in Preparation of Solid Multicomponent Systems. Pharmaceutics 2021; 13:475. [PMID: 33915815 PMCID: PMC8067079 DOI: 10.3390/pharmaceutics13040475] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/17/2023] Open
Abstract
Solid multicomponent systems (SMS) are gaining an increasingly important role in the pharmaceutical industry, to improve the physicochemical properties of active pharmaceutical ingredients (APIs). In recent years, various processes have been employed for SMS manufacturing. Control of the particle solid-state properties, such as size, morphology, and crystal form is required to optimize the SMS formulation. By utilizing the unique and tunable properties of supercritical fluids, supercritical anti-solvent (SAS) process holds great promise for the manipulation of the solid-state properties of APIs. The SAS techniques have been developed from batch to continuous mode. Their applications in SMS preparation are summarized in this review. Many pharmaceutical co-crystals and solid dispersions have been successfully produced via the SAS process, where the solid-state properties of APIs can be well designed by controlling the operating parameters. The underlying mechanisms on the manipulation of solid-state properties are discussed, with the help of on-line monitoring and computational techniques. With continuous researching, SAS process will give a large contribution to the scalable and continuous manufacturing of desired SMS in the near future.
Collapse
Affiliation(s)
- Guijin Liu
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | - Junjian Li
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | | |
Collapse
|
12
|
Abstract
With an increasing interest in cocrystals due to various advantages, demand for large-scale cocrystallization techniques is rising. Solution cocrystallization is a solvent-based approach that utilizes several single-component crystallization concepts as well as equipment for generating cocrystals. Solution-based techniques can produce cocrystals with reasonable control on purity, size distribution, morphology, and polymorphic form. Many of them also offer a scalable solution for the industrial production of cocrystals. However, the complexity of the thermodynamic landscape and the kinetics of cocrystallization offers fresh challenges which are not encountered in single component crystallization. This review focuses on the recent developments in different solution cocrystallization techniques for the production of pharmaceutically relevant cocrystals. The review consists of two sections. The first section describes the various solution cocrystallization methods, highlighting their benefits and limitations. The second section emphasizes the challenges in developing these techniques to an industrial scale and identifies the major thrust areas where further research is required.
Collapse
|
13
|
Improved Solubility and Dissolution Rates in Novel Multicomponent Crystals of Piperine with Succinic Acid. Sci Pharm 2020. [DOI: 10.3390/scipharm88020021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objectives of this study were to prepare and characterize a novel piperine–succinic acid multicomponent crystal phase and to evaluate the improvement in the solubility and dissolution rate of piperine when prepared in the multicomponent crystal formation. The solid-state characterization of the novel multicomponent crystal was performed by powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform-infrared (FT-IR) spectroscopy. Solubility and dissolution rate profiles were evaluated in distilled water. The physical stability was evaluated under high relative humidity (75% and 100% RH). The determination of the single crystal X-ray diffraction structure revealed that this novel multicomponent crystal was a cocrystalline phase of piperine–succinic acid (2:1 molar ratio). The differential scanning calorimetry thermogram of the cocrystal showed a single and sharp endothermic peak at 110.49 °C. The cocrystal resulted in greater solubility and a faster dissolution rate of piperine than intact piperine. This improvement was a result of the formation of a channel structure in the cocrystal. In addition, the cocrystal was stable under a humid condition.
Collapse
|
14
|
Budhwar V, Dutt B, Choudhary M. Cocrystallization: An innovative route toward better medication. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2020. [DOI: 10.4103/jrptps.jrptps_103_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Ribas MM, Sakata GS, Santos AE, Dal Magro C, Aguiar GPS, Lanza M, Oliveira J. Curcumin cocrystals using supercritical fluid technology. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Pessoa AS, Aguiar GPS, Vladimir Oliveira J, Bortoluzzi AJ, Paulino A, Lanza M. Precipitation of resveratrol-isoniazid and resveratrol-nicotinamide cocrystals by gas antisolvent. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Chen N, Di P, Ning S, Jiang W, Jing Q, Ren G, Liu Y, Tang Y, Xu Z, Liu G, Ren F. Modified rivaroxaban microparticles for solid state properties improvement based on drug-protein/polymer supramolecular interactions. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.12.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Solaimalai R, Shinde G, Dharamsi A, Vyawahare N. Synthesis of 5-hydroxy-2-methyl-naphthalene-1,4-dione cocrystals with pyridine-3-carboxamide using electrospray technology: physicochemical characterization and in vitro non-everted rat intestinal absorption study. NEW J CHEM 2019. [DOI: 10.1039/c9nj00172g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plumbagin with nicotinamide cocrystals synthesised by electrospray technology demonstrated two-, three- and nine-fold enhancements in solubility, dissolution and permeability coefficient.
Collapse
Affiliation(s)
| | | | - Abhay Dharamsi
- Department of Pharmaceutics
- Parul Institute of Pharmacy
- Parul University
- Vadodara
- India
| | - Niraj Vyawahare
- Department of Pharmacology
- Dr D. Y. Patil College of Pharmacy
- Pune
- India
| |
Collapse
|
19
|
Mohite R, Mehta P, Arulmozhi S, Kamble R, Pawar A, Bothiraja C. Synthesis of fisetin co-crystals with caffeine and nicotinamide using the cooling crystallization technique: biopharmaceutical studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj01848d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A fisetin-caffeine co-crystal prepared by using cooling crystallization technology showed a two- and three-fold improvement in the solubility and oral bioavailability of fisetin.
Collapse
Affiliation(s)
- Rohini Mohite
- Department of Pharmaceutics
- Poona College of Pharmacy
- Bharati Vidyapeeth (Deemed to be University)
- Pune 411038
- India
| | - Piyush Mehta
- Department of Quality Assurance
- Poona College of Pharmacy
- Bharati Vidyapeeth (Deemed to be University)
- Pune 411038
- India
| | - S. Arulmozhi
- Department of Pharmacology
- Poona College of Pharmacy
- Bharati Vidyapeeth (Deemed to be University)
- Pune 411038
- India
| | - Ravindra Kamble
- Department of Pharmaceutics
- Poona College of Pharmacy
- Bharati Vidyapeeth (Deemed to be University)
- Pune 411038
- India
| | - Atmaram Pawar
- Department of Pharmaceutics
- Poona College of Pharmacy
- Bharati Vidyapeeth (Deemed to be University)
- Pune 411038
- India
| | - C. Bothiraja
- Department of Pharmaceutics
- Poona College of Pharmacy
- Bharati Vidyapeeth (Deemed to be University)
- Pune 411038
- India
| |
Collapse
|
20
|
Sathisaran I, Dalvi SV. Engineering Cocrystals of PoorlyWater-Soluble Drugs to Enhance Dissolution in Aqueous Medium. Pharmaceutics 2018; 10:E108. [PMID: 30065221 PMCID: PMC6161265 DOI: 10.3390/pharmaceutics10030108] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 01/17/2023] Open
Abstract
Biopharmaceutics Classification System (BCS) Class II and IV drugs suffer from poor aqueous solubility and hence low bioavailability. Most of these drugs are hydrophobic and cannot be developed into a pharmaceutical formulation due to their poor aqueous solubility. One of the ways to enhance the aqueous solubility of poorlywater-soluble drugs is to use the principles of crystal engineering to formulate cocrystals of these molecules with water-soluble molecules (which are generally called coformers). Many researchers have shown that the cocrystals significantly enhance the aqueous solubility of poorly water-soluble drugs. In this review, we present a consolidated account of reports available in the literature related to the cocrystallization of poorly water-soluble drugs. The current practice to formulate new drug cocrystals with enhanced solubility involves a lot of empiricism. Therefore, in this work, attempts have been made to understand a general framework involved in successful (and unsuccessful) cocrystallization events which can yield different solid forms such as cocrystals, cocrystal polymorphs, cocrystal hydrates/solvates, salts, coamorphous solids, eutectics and solid solutions. The rationale behind screening suitable coformers for cocrystallization has been explained based on the rules of five i.e., hydrogen bonding, halogen bonding (and in general non-covalent bonding), length of carbon chain, molecular recognition points and coformer aqueous solubility. Different techniques to screen coformers for effective cocrystallization and methods to synthesize cocrystals have been discussed. Recent advances in technologies for continuous and solvent-free production of cocrystals have also been discussed. Furthermore, mechanisms involved in solubilization of these solid forms and the parameters influencing dissolution and stability of specific solid forms have been discussed. Overall, this review provides a consolidated account of the rationale for design of cocrystals, past efforts, recent developments and future perspectives for cocrystallization research which will be extremely useful for researchers working in pharmaceutical formulation development.
Collapse
Affiliation(s)
- Indumathi Sathisaran
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Sameer Vishvanath Dalvi
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
21
|
Application of Box–Behnken design for processing of mefenamic acid–paracetamol cocrystals using gas anti-solvent (GAS) process. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review. Adv Drug Deliv Rev 2018; 131:22-78. [PMID: 30026127 DOI: 10.1016/j.addr.2018.07.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
Low drug bioavailability, which is mostly a result of poor aqueous drug solubilities and of inadequate drug dissolution rates, is one of the most significant challenges that pharmaceutical companies are currently facing, since this may limit the therapeutic efficacy of marketed drugs, or even result in the discard of potential highly effective drug candidates during developmental stages. Two of the main approaches that have been implemented in recent years to overcome poor drug solubility/dissolution issues have frequently involved drug particle size reduction (i.e., micronization/nanonization) and/or the modification of some of the physicochemical and structural properties of poorly water soluble drugs. A large number of particle engineering methodologies have been developed, tested, and applied in the synthesis and control of particle size/particle-size distributions, crystallinities, and polymorphic purities of drug micro- and nano-particles/crystals. In recent years pharmaceutical processing using supercritical fluids (SCF), in general, and supercritical carbon dioxide (scCO2), in particular, have attracted a great attention from the pharmaceutical industry. This is mostly due to the several well-known advantageous technical features of these processes, as well as to other increasingly important subjects for the pharmaceutical industry, namely their "green", sustainable, safe and "environmentally-friendly" intrinsic characteristics. In this work, it is presented a comprehensive state-of-the-art review on scCO2-based processes focused on the formation and on the control of the physicochemical, structural and morphological properties of amorphous/crystalline pure drug nanoparticles. It is presented and discussed the most relevant scCO2, scCO2-based fluids and drug physicochemical properties that are pertinent for the development of successful pharmaceutical products, namely those that are critical in the selection of an adequate scCO2-based method to produce pure drug nanoparticles/nanocrystals. scCO2-based nanoparticle formation methodologies are classified in three main families, and in terms of the most important role played by scCO2 in particle formation processes: as a solvent; as an antisolvent or a co-antisolvent; and as a "high mobility" additive (a solute, a co-solute, or a co-solvent). Specific particle formation methods belonging to each one of these families are presented, discussed and compared. Some selected amorphous/crystalline drug nanoparticles that were prepared by these methods are compiled and presented, namely those studied in the last 10-15 years. A special emphasis is given to the formation of drug cocrystals. It is also discussed the fundamental knowledge and the main mechanisms in which the scCO2-based particle formation methods rely on, as well as the current status and urgent needs in terms of reliable experimental data and of robust modeling approaches. Other addressed and discussed topics include the currently available and the most adequate physicochemical, morphological and biological characterization methods required for pure drug nanoparticles/nanocrystals, some of the current nanometrology and regulatory issues associated to the use of these methods, as well as some scale-up, post-processing and pharmaceutical regulatory subjects related to the industrial implementation of these scCO2-based processes. Finally, it is also discussed the current status of these techniques, as well as their future major perspectives and opportunities for industrial implementation in the upcoming years.
Collapse
|
23
|
Statistical optimization for production of mefenamic acid–nicotinamide cocrystals using gas anti-solvent (GAS) process. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Abuzar SM, Hyun SM, Kim JH, Park HJ, Kim MS, Park JS, Hwang SJ. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. Int J Pharm 2018; 538:1-13. [DOI: 10.1016/j.ijpharm.2017.12.041] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/17/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023]
|
25
|
Advanced methodologies for cocrystal synthesis. Adv Drug Deliv Rev 2017; 117:178-195. [PMID: 28712924 DOI: 10.1016/j.addr.2017.07.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 11/21/2022]
Abstract
Pharmaceutical cocrystals are multicomponent systems composed of two or more molecules and held together by H-bonding. Currently, cocrystals provide exciting opportunities in the pharmaceutical industry for the development and manufacturing of new medicines by improving poor physical properties of Active Pharmaceutical Ingredients (APIs) such as processability, solubility, stability and bioavailability. According to the recent reclassification, cocrystals are considered as drug polymorph rather a new API which has a significant impact on drug development, regulatory submissions and intellectual property protection. This review summarizes recent trends and advances in synthesis, manufacturing and scale - up of cocrystals. The operational principles of several cocrystals manufacturing technologies are discussed including their advantages and disadvantages in terms of crystal quality, purity stability, throughput and limitations in large scale production.
Collapse
|
26
|
Seo JW, Hwang KM, Lee SH, Kim DW, Park ES. Preparation and characterization of adefovir dipivoxil-stearic acid cocrystal with enhanced physicochemical properties. Pharm Dev Technol 2017; 23:890-899. [PMID: 28535125 DOI: 10.1080/10837450.2017.1334664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The objectives of this study were to prepare cocrystal composed of adefovir dipivoxil (AD) and stearic acid (SA) and to investigate the enhanced properties of the cocrystal. The cocrystal was prepared by antisolvent precipitation and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRPD), and differential scanning calorimetry (DSC). The enhanced properties were evaluated by dissolution testing, permeability studies, and powder rheology analysis. The AD raw material has a cuboid-like crystal and the cocrystal has a needle shape. In the FT-IR study, there were bathochromic shifts caused by the hydrogen bonding. The melting point of the cocrystal was 52.9 °C, which was lower than that of AD. The XRPD pattern also had distinct differences, supporting the formation of a new crystalline form. The cocrystal showed changes in the lattice energy and the solvation strength, which caused an enhanced dissolution. The permeability was increased due to the SA, which acts as a P-gp inhibitor. The tabletability was enhanced due to the altered crystal habit. In conclusion, cocrystal containing AD and SA was successfully prepared, presenting advantages such as enhanced solubility, tabletability, and permeability. The use of the cocrystal is a desirable approach for the improved physicochemical properties.
Collapse
Affiliation(s)
- Jeong-Woong Seo
- a School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Kyu-Min Hwang
- a School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Sung-Hoon Lee
- b Department of Pharmaceutical Engineering , Cheongju University , Cheongju , Republic of Korea
| | - Dong-Wook Kim
- b Department of Pharmaceutical Engineering , Cheongju University , Cheongju , Republic of Korea
| | - Eun-Seok Park
- a School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| |
Collapse
|
27
|
Karashima M, Sano N, Yamamoto S, Arai Y, Yamamoto K, Amano N, Ikeda Y. Enhanced pulmonary absorption of poorly soluble itraconazole by micronized cocrystal dry powder formulations. Eur J Pharm Biopharm 2017; 115:65-72. [PMID: 28223260 DOI: 10.1016/j.ejpb.2017.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/27/2017] [Accepted: 02/16/2017] [Indexed: 11/30/2022]
Abstract
Micronized cocrystal powders and amorphous spray-dried formulations were prepared and evaluated in vivo and in vitro as pulmonary absorption enhancement formulations of poorly soluble itraconazole (ITZ). ITZ cocrystals with succinic acid (SA) or l-tartaric acid (TA) with a particle size diameter of <2μm were successfully micronized using the jet-milling system. The cocrystal crystalline morphologies observed using scanning electron microscopy (SEM) suggested particle shapes that differed from those of the crystalline or spray-dried amorphous ITZ. The micronized ITZ cocrystal powders showed better intrinsic dissolution rate (IDR) and pulmonary absorption profile in rats than that of the amorphous spray-dried formulation and crystalline ITZ with comparable particle sizes. Specifically, in rat pharmacokinetic studies following pulmonary administration, micronized ITZ-SA and ITZ-TA cocrystals showed area under the curve from 0 to 8h (AUC0-8h) values approximately 24- and 19-fold higher than those of the crystalline ITZ and 2.0- and 1.6-fold higher than the spray-dried ITZ amorphous values, respectively. The amorphous formulation appeared physically instable during the studies due to rapid crystallization of ITZ, which was its disadvantage compared to the crystalline formulations. Therefore, this study demonstrated that micronized cocrystals are promising formulations for enhancing the pulmonary absorption of poorly soluble compounds.
Collapse
Affiliation(s)
- Masatoshi Karashima
- Takeda Pharmaceutical Company Ltd., Analytical Development, Pharmaceutical Sciences, Kanagawa 251-8555, Japan.
| | - Noriyasu Sano
- Takeda Pharmaceutical Company Ltd., Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Kanagawa 251-8555, Japan
| | - Syunsuke Yamamoto
- Takeda Pharmaceutical Company Ltd., Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Kanagawa 251-8555, Japan
| | - Yuta Arai
- Takeda Pharmaceutical Company Ltd., Analytical Development, Pharmaceutical Sciences, Kanagawa 251-8555, Japan
| | - Katsuhiko Yamamoto
- Takeda Pharmaceutical Company Ltd., Analytical Development, Pharmaceutical Sciences, Kanagawa 251-8555, Japan
| | - Nobuyuki Amano
- Takeda Pharmaceutical Company Ltd., Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Kanagawa 251-8555, Japan
| | - Yukihiro Ikeda
- Takeda Pharmaceutical Company Ltd., Analytical Development, Pharmaceutical Sciences, Kanagawa 251-8555, Japan
| |
Collapse
|
28
|
|
29
|
Chen HH, Su CS. Recrystallizing Primidone through Supercritical Antisolvent Precipitation. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.5b00279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hung-Hsin Chen
- Department of Chemical Engineering
and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chie-Shaan Su
- Department of Chemical Engineering
and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
30
|
Cuadra IA, Cabañas A, Cheda JA, Martínez-Casado FJ, Pando C. Pharmaceutical co-crystals of the anti-inflammatory drug diflunisal and nicotinamide obtained using supercritical CO2 as an antisolvent. J CO2 UTIL 2016. [DOI: 10.1016/j.jcou.2015.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Pando C, Cabañas A, Cuadra IA. Preparation of pharmaceutical co-crystals through sustainable processes using supercritical carbon dioxide: a review. RSC Adv 2016. [DOI: 10.1039/c6ra10917a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The preparation of pharmaceutical co-crystals using supercritical CO2 (scCO2) is reviewed.
Collapse
Affiliation(s)
- Concepción Pando
- Dpto. de Química Física I
- Facultad C. Químicas
- Universidad Complutense
- E-28040 Madrid
- Spain
| | - Albertina Cabañas
- Dpto. de Química Física I
- Facultad C. Químicas
- Universidad Complutense
- E-28040 Madrid
- Spain
| | - Isaac A. Cuadra
- Dpto. de Química Física I
- Facultad C. Químicas
- Universidad Complutense
- E-28040 Madrid
- Spain
| |
Collapse
|
32
|
Shete A, Murthy S, Korpale S, Yadav A, Sajane S, Sakhare S, Doijad R. Cocrystals of itraconazole with amino acids: Screening, synthesis, solid state characterization, in vitro drug release and antifungal activity. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Esfandiari N, Ghoreishi SM. Optimal thermodynamic conditions for ternary system (CO2, DMSO, ampicillin) in supercritical CO2 antisolvent process. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
|
35
|
Cocrystallization induced by compressed CO2 as antisolvent: Simulation of a batch process for the estimation of nucleation and growth parameters. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2014.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Jain S, Patel N, Lin S. Solubility and dissolution enhancement strategies: current understanding and recent trends. Drug Dev Ind Pharm 2014; 41:875-87. [PMID: 25342479 DOI: 10.3109/03639045.2014.971027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Identification of lead compounds with higher molecular weight and lower aqueous solubility has become increasingly prevalent with the advent of high throughput screening. Poor aqueous solubility of these lipophilic compounds can drastically affect the dissolution rate and subsequently the drug absorbed in the systemic circulation, imposing a significant burden of time and money during drug development process. Various pre-formulation and formulation strategies have been applied in the past that can improve the aqueous solubility of lipophilic compounds by manipulating either the crystal lattice properties or the activity coefficient of a solute in solution or both, if possible. However, despite various strategies available in the armor of formulation scientist, solubility issue still remains an overriding problem in the drug development process. It is perhaps due to the insufficient conceptual understanding of solubility and dissolution phenomenon that hinders the judgment in selecting suitable strategy for improving aqueous solubility and/or dissolution rate. This article, therefore, focuses on (i) revisiting the theoretical and mathematical concepts associated with solubility and dissolution, (ii) their application in making rationale decision for selecting suitable pre-formulation and formulation strategies and (iii) the relevant research performed in this field in past decade.
Collapse
Affiliation(s)
- Shashank Jain
- College of Pharmacy and Health Sciences, St. John's University , Queens, NY , USA
| | | | | |
Collapse
|
37
|
|
38
|
Ober CA, Gupta RB. Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization. AAPS PharmSciTech 2012; 13:1396-406. [PMID: 23054991 DOI: 10.1208/s12249-012-9866-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/25/2012] [Indexed: 11/30/2022] Open
Abstract
Cocrystals of itraconazole, an antifungal drug with poor bioavailability, and succinic acid, a water-soluble dicarboxylic acid, were formed by gas antisolvent (GAS) cocrystallization using pressurized CO(2) to improve itraconazole dissolution. In this study, itraconazole and succinic acid were simultaneously dissolved in a liquid solvent, tetrahydrofuran, at ambient conditions. The solution was then pressurized with CO(2), which decreased the solvating power of tetrahydrofuran and caused crystallization of itraconazole-succinic acid cocrystals. The cocrystals prepared by GAS cocrystallization were compared to those produced using a traditional liquid antisolvent, n-heptane, for crystallinity, chemical structure, thermal behavior, size and surface morphology, potential clinical relevance, and stability. Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy analyses showed that itraconazole-succinic acid cocrystals with physical and chemical properties similar to cocrystals produced using a traditional liquid antisolvent technique can be prepared by CO(2) antisolvent cocrystallization. The dissolution profile of itraconazole was significantly enhanced through GAS cocrystallization with succinic acid, achieving over 90% dissolution in less than 2 h. The cocrystals appeared stable against thermal stress for up to 4 weeks under accelerated stability conditions, showing only moderate decreases in their degree of crystallinity but no change in their crystalline structure. This study shows the utility of an itraconazole-succinic acid cocrystal for improving itraconazole bioavailability while also demonstrating the potential for CO(2) to replace traditional liquid antisolvents in cocrystal preparation, thus making cocrystal production more environmentally benign and scale-up more feasible.
Collapse
|