1
|
Kotamarthy L, Karkala S, Dan A, Román-Ospino AD, Ramachandran R. Investigating the Effects of Mixing Dynamics on Twin-Screw Granule Quality Attributes via the Development of a Physics-Based Process Map. Pharmaceutics 2024; 16:456. [PMID: 38675117 PMCID: PMC11054190 DOI: 10.3390/pharmaceutics16040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Twin-screw granulation (TSG) is an emerging continuous wet granulation technique that has not been widely applied in the industry due to a poor mechanistic understanding of the process. This study focuses on improving this mechanistic understanding by analyzing the effects of the mixing dynamics on the granule quality attributes (PSD, content uniformity, and microstructure). Mixing is an important dynamic process that simultaneously occurs along with the granulation rate mechanisms during the wet granulation process. An improved mechanistic understanding was achieved by identifying and quantifying the physically relevant intermediate parameters that affect the mixing dynamics in TSG, and then their effects on the granule attributes were analyzed by investigating their effects on the granulation rate mechanisms. The fill level, granule liquid saturation, extent of nucleation, and powder wettability were found to be the key physically relevant intermediate parameters that affect the mixing inside the twin-screw granulator. An improved geometrical model for the fill level was developed and validated against existing experimental data. Finally, a process map was developed to depict the effects of mixing on the temporal and spatial evolution of the materials inside the twin-screw granulator. This process map illustrates the mechanism of nucleation and the growth of the granules based on the fundamental material properties of the primary powders (solubility and wettability), liquid binders (viscosity), and mixing dynamics present in the system. Furthermore, it was shown that the process map can be used to predict the granule product quality based on the granule growth mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Rohit Ramachandran
- Department of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA; (L.K.)
| |
Collapse
|
2
|
Peeters M, Barrera Jiménez AA, Matsunami K, Ghijs M, Dos Santos Schultz E, Roudgar M, Vigh T, Stauffer F, Nopens I, De Beer T. Analysis of the effect of formulation properties and process parameters on granule formation in twin-screw wet granulation. Int J Pharm 2024; 650:123671. [PMID: 38065345 DOI: 10.1016/j.ijpharm.2023.123671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/08/2024]
Abstract
In the last few years, twin-screw wet granulation (TSWG) has become one of the key continuous pharmaceutical unit operations. Despite the many studies that have been performed, only little is known about the effect of the starting material properties on the stepwise granule formation along the length of the twin-screw granulator (TSG) barrel. Hence, this study obtained a detailed understanding of the effect of formulation properties (i.e., Active Pharmaceutical Ingredient (API) properties, formulation blend particle size distribution and formulation drug load) and process settings on granule formation in TSWG. An experimental set-up was used allowing the collection of granules at the different TSG compartments. Granules were characterized in terms of granule size, shape, binder liquid and API distributions. Liquid-to-solid (L/S) ratio was the only TSG process parameter impacting the granule size and shape evolution. Particle size and flow properties (e.g., flow rate index) had an important effect on the granule size and shape changes whereas water-related properties (e.g., water binding capacity and solubility) became influential at the last TSG compartments. The API solubility and L/S ratio were found to have a major impact on the distribution of binder liquid over the different granule size fractions. In the first TSG compartment (i.e., wetting compartment), the distribution of the API in the granules was influenced by its solubility in the granulation liquid.
Collapse
Affiliation(s)
- Michiel Peeters
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Ana Alejandra Barrera Jiménez
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Kensaku Matsunami
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent 9000, Oost-Vlaanderen, Belgium.
| | - Michael Ghijs
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent 9000, Oost-Vlaanderen, Belgium
| | | | - Mina Roudgar
- Discovery, Product Development & Supply, Janssen R&D, Beerse B-2340, Belgium
| | - Tamas Vigh
- Discovery, Product Development & Supply, Janssen R&D, Beerse B-2340, Belgium
| | - Fanny Stauffer
- Product Design & Performance, UCB, Braine l'Alleud 1420, Belgium
| | - Ingmar Nopens
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium
| |
Collapse
|
3
|
Lang T, Bramböck A, Thommes M, Bartsch J. Material Transport Characteristics in Planetary Roller Melt Granulation. Pharmaceutics 2023; 15:2039. [PMID: 37631253 PMCID: PMC10458212 DOI: 10.3390/pharmaceutics15082039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Melt granulation for improving material handling by modifying particle size distribution offers significant advantages compared to the standard methods of dry and wet granulation in dust reduction, obviating a subsequent drying step. Furthermore, current research in pharmaceutical technology aims for continuous methods, as these have an enhanced potential to reduce product quality fluctuations. Concerning both aspects, the use of a planetary roller granulator is consequential. The process control with these machines benefits from the enhanced ratio of heated surface to processed volume, compared to the usually-applied twin-screw systems. This is related to the unique concept of planetary spindles flowing around a central spindle in a roller cylinder. Herein, the movement pattern defines the transport characteristics, which determine the energy input and overall processing conditions. The aim of this study is to investigate the residence time distribution in planetary roller melt granulation (PRMG) as an indicator for the material transport. By altering feed rate and rotation speed, the fill level in the granulator is adjusted, which directly affects the average transport velocity and mixing volume. The two-compartment model was utilized to reflect these coherences, as the model parameters symbolize the sub-processes of axial material transport and mixing.
Collapse
Affiliation(s)
- Tom Lang
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany (M.T.)
| | | | - Markus Thommes
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany (M.T.)
| | - Jens Bartsch
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany (M.T.)
| |
Collapse
|
4
|
Mechanistic understanding of the effects of process and design parameters on the mixing dynamics in continuous twin-screw granulation. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.05.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Improvement of a 1D Population Balance Model for Twin-Screw Wet Granulation by Using Identifiability Analysis. Pharmaceutics 2021; 13:pharmaceutics13050692. [PMID: 34064771 PMCID: PMC8151179 DOI: 10.3390/pharmaceutics13050692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, the pharmaceutical industry has undergone changes in the production of solid oral dosages from traditional inefficient and expensive batch production to continuous manufacturing. The latest advancements include increased use of continuous twin-screw wet granulation and application of advanced modeling tools such as Population Balance Models (PBMs). However, improved understanding of the physical process within the granulator and improvement of current population balance models are necessary for the continuous production process to be successful in practice. In this study, an existing compartmental one-dimensional PBM of a twin-screw granulation process was improved by altering the original aggregation kernel in the wetting zone as a result of an identifiability analysis. In addition, a strategy was successfully applied to reduce the number of model parameters to be calibrated in both the wetting zone and kneading zones. It was found that the new aggregation kernel in the wetting zone is capable of reproducing the particle size distribution that is experimentally observed at different process conditions as well as different types of formulations, varying in hydrophilicity and API concentration. Finally, it was observed that model parameters could be linked not only to the material properties but also to the liquid to solid ratio, paving the way to create a generic PBM to predict the particle size distribution of a new formulation.
Collapse
|
6
|
Zhang Y, Liu T, Kashani-Rahimi S, Zhang F. A review of twin screw wet granulation mechanisms in relation to granule attributes. Drug Dev Ind Pharm 2021; 47:349-360. [PMID: 33507106 DOI: 10.1080/03639045.2021.1879844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to the trend of continuous pharmaceutical manufacturing, twin screw wet granulation (TSWG), a continuous process, has gained increased research interest as a potential substitution of traditional batch granulation processes. Despite the complex nature of TSWG, its mechanisms have been gradually unveiled with the aid of innovative research strategies. This review synthesizes these recent findings to provide a comprehensive and mechanistic understanding of TSWG. We explain the impact of screw profiles (i.e. conveying, kneading, turbine mixing, and screw mixing elements) and process conditions (i.e. screw speed, feed rate, and liquid-to-solid ratio) on TSWG mixing performance and granule growth along the barrel, both of which ultimately affect critical granule attributes such as content uniformity, size distribution, strength, and compaction properties.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Tongzhou Liu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Shahab Kashani-Rahimi
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Feng Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
|
8
|
Mundozah AL, Yang J, Omar C, Mahmah O, Salman AD. Twin screw granulation: A simpler re-derivation of quantifying fill level. Int J Pharm 2020; 591:119959. [PMID: 33039494 DOI: 10.1016/j.ijpharm.2020.119959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
The fill level is defined as the volume occupied by the powder and granules inside the twin-screw granulator in proportion to the maximum barrel channel void 'free' volume. In literature, the fill level is one of the key factors that determine the final granule properties as it relies on several factors such as the screw speed, screw element geometry, mass flow rate and barrel length. However, quantitative prediction of the fill level in twin-screw granulation (TSG) is still a developing area, which is required to enable effective development of process design space, to yield a product with desired quality attributes for all process scale levels (small to large equipment). In this study, a simple geometrical model is presented that predicts the barrel channel fill level in TSG. This model relates the volumetric flow rate to the forward volumetric conveying rate of the screws when they advance in the axial direction. Experimentation was conducted to validate the model by analytically measuring mass hold-up, the amount of material remaining in the barrel after steady state was reached, as the fill level is proportional to mass hold-up. Furthermore, the trends in the extent of granulation with the proposed model were investigated. Good agreement was found between the proposed fill level model and the mass hold-up for various screw elements, therefore the model provides a more practical measure of the fill level in TSG.
Collapse
Affiliation(s)
- Aquino L Mundozah
- Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Jiankai Yang
- Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Chalak Omar
- Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Osama Mahmah
- Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Agba D Salman
- Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK.
| |
Collapse
|
9
|
In-line temperature measurement to improve the understanding of the wetting phase in twin-screw wet granulation and its use in process development. Int J Pharm 2020; 584:119451. [PMID: 32454132 DOI: 10.1016/j.ijpharm.2020.119451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/21/2022]
Abstract
Wetting is the initial stage of wet granulation processes during which the first contact between the powder and the liquid occurs. Wetting is a critical step to allow granule growth and consolidation, but also to ensure uniform active pharmaceutical ingredient (API) distribution over all granule size fractions. A physical understanding of the wetting stage is therefore crucial to design a robust granulation process. In twin-screw granulation, wetting is physically separated from granule consolidation, growth, breakage and attrition. The present study used this particularity to investigate the wetting step in such a way that the fundamental mechanisms governing the wetting can be linked and understood. A modified granulator barrel was used allowing the collection of granules immediately after the wetting. A low drug-loaded pharmaceutical formulation containing a poorly soluble and poorly wettable API was used for this investigation. Granules obtained after the wetting zone were analysed for granule size distribution, API distribution over the different size fractions and granule temperature. It was found that "wetting efficiency" (i.e., fraction of powder being nucleated during the wetting stage) could be predicted using an energy balance based on in-line measurement of the granule temperature. Wetting efficiency could moreover be linked to final granule quality attributes (i.e., granule size distribution) at the outlet of the granulator. It was further demonstrated that granule growth and consolidation could only be achieved when complete wetting was achieved in the wetting zone of the granulator. This study suggested a methodology based on in-line temperature measurements to quickly determine wetting efficiency. The described methodology could therefore be used as a tool to gain more fundamental understanding of the wetting stage during twin-screw granulation as well as to define suitable formulation and process ranges for further granulation process development.
Collapse
|
10
|
Kashani Rahimi S, Paul S, Sun CC, Zhang F. The role of the screw profile on granular structure and mixing efficiency of a high-dose hydrophobic drug formulation during twin screw wet granulation. Int J Pharm 2020; 575:118958. [DOI: 10.1016/j.ijpharm.2019.118958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022]
|