Preud'homme N, Lumay G, Vandewalle N, Opsomer E. Numerical measurement of flow fluctuations to quantify cohesion in granular materials.
Phys Rev E 2022;
104:064901. [PMID:
35030871 DOI:
10.1103/physreve.104.064901]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/18/2021] [Indexed: 11/07/2022]
Abstract
The flow of cohesive granular materials in a two-dimensional rotating drum is investigated using discrete element method simulations. Contacts between particles are modeled based on the widely used model of the spring-dashpot and Coulomb's friction law. A simplified model of intermediate range attraction between grains (i.e., cohesion) has been used in order to reproduce the flow of electrostatic or wet granular materials. Granular flow is generated by means of a rotating drum and the effect of the rotation speed, the friction between the grains, and the cohesion are studied. Significantly different flow behaviors are observed when cohesion is added. Plug flow appears in the rotating drum for a wide range of rotation speeds when cohesion becomes sufficiently strong. We propose a measurement of surface flow fluctuations to quantify the strength of cohesion, inspired by the previous observation of plug flow. Then, we make use of the results to include the effect of cohesion into a theoretical flow model. A good agreement is obtained between theory and numerical measurements of the granular bed's dynamic angle of repose, which allows us to propose a method for estimating the microscopic cohesion between grains based on the measurement of surface fluctuations.
Collapse