1
|
Liang Y, Xiang Z, Zhao X, Yan P, Xue L, Gu L, Long Y, Yu T, Yang Y. Facet-specific NiCo 2O 4/Fe 2O 3 p-n heterojunction with promising triethylamine sensing properties. J Colloid Interface Sci 2024; 653:1539-1547. [PMID: 37804621 DOI: 10.1016/j.jcis.2023.09.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Semiconductor gas sensing materials with specific crystal facets exposure have attracted researchers' attention recently. However, related research mainly focuses on single metal oxide semiconductor. The research on crystal facets designing of semiconductor p-n heterojunction is still highly challenging. Herein, based on NiCo2O4 octahedral nanocrystals with high-energy {111} crystal facets as substrate, Fe2O3 nanorods with {001} crystal facets were decorated to obtain a facet-specific NiCo2O4/Fe2O3 p-n heterojunction. The p-n heterojunction showed promising triethylamine sensing properties with a high response of 70 (Ra/Rg, 100 ppm) at 300 °C, which was about 57 and 10 times higher than that of pristine NiCo2O4 and Fe2O3, respectively. Theoretical calculation suggested that the electronic coupling effect formed by d-orbitals of Co-Fe in heterojunction strengthened the influence on the orbitals of N site in triethylamine, which improved the triethylamine adsorption and interface charge transfer. The results indicate that crystal facets designing of NiCo2O4 and Fe2O3 can achieve synergistic optimization of surface/interface characteristics of p-n heterojunction, thereby achieving a comprehensive improvement in gas sensing performance. This study not only provides a high performance triethylamine sensing material, but also greatly enriches the gas sensing mechanism of p-n heterojunction at the atomic and electronic levels.
Collapse
Affiliation(s)
- Yan Liang
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Zhongke Xiang
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Xiaojian Zhao
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Peipei Yan
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Li Xue
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Lisheng Gu
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Yongdong Long
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Ting Yu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, PR China
| | - Yong Yang
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, PR China.
| |
Collapse
|
2
|
Tawade AK, Khairnar AP, Kamble JV, Kadam AR, Sharma KKK, Powar AA, Patil VS, Patil MR, Mali SS, Hong CK, Tayade SN. Designing a TiO 2-MoO 3-BMIMBr nanocomposite by a solvohydrothermal method using an ionic liquid aqueous mixture: an ultra high sensitive acetaminophen sensor. RSC Adv 2023; 13:21283-21295. [PMID: 37456552 PMCID: PMC10345954 DOI: 10.1039/d3ra02611f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
This study shows a simplistic, efficient procedure to synthesize TiO2-MoO3-BMIMBr nanocomposites. Powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy have all been used to completely analyse the materials. The detection of acetaminophen (AC) has been examined at a modified glassy carbon electrode with TiO2-MoO3-BMIMBr nanocomposites. Moreover, the electrochemical behavior of the nanocomposite modified electrode has been studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The linear response of AC was observed in the range 8.26-124.03 nM. The sensitivity and detection limits (S/N = 3) were found to be 1.16 μA L mol-1 cm-2 and 11.54 nM by CV and 24 μA L mol-1 cm-2 and 8.16 nM by DPV respectively.
Collapse
Affiliation(s)
- Anita K Tawade
- School of Nanoscience and Biotechnology, Shivaji University Kolhapur 416004 Maharashtra India
| | - Ajay P Khairnar
- R. F. N. S. Senior Science College Akkalkuwa 425415 Maharashtra India
| | - Jayashri V Kamble
- Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | - Akash R Kadam
- Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | - Kiran Kumar K Sharma
- School of Nanoscience and Biotechnology, Shivaji University Kolhapur 416004 Maharashtra India
| | - Anil A Powar
- Department of Chemistry, Walchand College of Engineering Sangli 416415 Maharashtra India
| | - Vijay S Patil
- R. F. N. S. Senior Science College Akkalkuwa 425415 Maharashtra India
| | - Manohar R Patil
- Nanochemistry Research Laboratory, G. T. Patil Collage Nandurbar 425412 Maharashtra India
| | - Sawanta S Mali
- Department of Advanced Chemical Engineering, Chonnam National University Gwangju 61186 South Korea
| | - Chang Kook Hong
- Department of Advanced Chemical Engineering, Chonnam National University Gwangju 61186 South Korea
| | - Shivaji N Tayade
- Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| |
Collapse
|
3
|
Hermawan A, Septiani NLW, Taufik A, Yuliarto B, Yin S. Advanced Strategies to Improve Performances of Molybdenum-Based Gas Sensors. NANO-MICRO LETTERS 2021; 13:207. [PMID: 34633560 PMCID: PMC8505593 DOI: 10.1007/s40820-021-00724-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/22/2021] [Indexed: 05/29/2023]
Abstract
Molybdenum-based materials have been intensively investigated for high-performance gas sensor applications. Particularly, molybdenum oxides and dichalcogenides nanostructures have been widely examined due to their tunable structural and physicochemical properties that meet sensor requirements. These materials have good durability, are naturally abundant, low cost, and have facile preparation, allowing scalable fabrication to fulfill the growing demand of susceptible sensor devices. Significant advances have been made in recent decades to design and fabricate various molybdenum oxides- and dichalcogenides-based sensing materials, though it is still challenging to achieve high performances. Therefore, many experimental and theoretical investigations have been devoted to exploring suitable approaches which can significantly enhance their gas sensing properties. This review comprehensively examines recent advanced strategies to improve the nanostructured molybdenum-based material performance for detecting harmful pollutants, dangerous gases, or even exhaled breath monitoring. The summary and future challenges to advance their gas sensing performances will also be presented.
Collapse
Affiliation(s)
- Angga Hermawan
- Faculty of Textile Science and Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
- Institute of Multidisciplinary Research for Advanced Material (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Ni Luh Wulan Septiani
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Ardiansyah Taufik
- Institute of Multidisciplinary Research for Advanced Material (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Brian Yuliarto
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Material (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
| |
Collapse
|
4
|
Liu C, Zhang N, Huang X, Wang Q, Wang X, Wang S. Fabrication of a novel nanocomposite electrode with ZnO-MoO3 and biochar derived from mushroom biomaterials for the detection of acetaminophen in the presence of DA. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105719] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Wang J, Zhou Q, Peng S, Xu L, Zeng W. Volatile Organic Compounds Gas Sensors Based on Molybdenum Oxides: A Mini Review. Front Chem 2020; 8:339. [PMID: 32432083 PMCID: PMC7215074 DOI: 10.3389/fchem.2020.00339] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
As a typical n-type semiconductor, MoO3 has been widely applied in the gas-detection field due to its competitive physicochemical properties and ecofriendly characteristics. Volatile organic compounds (VOCs) are harmful to the atmospheric environment and human life, so it is necessary to quickly identify the presence of VOCs in the air. This review briefly introduced the application progress of an MoO3-based sensor in VOCs detection. We mainly emphasized the optimization strategies of a high performance MoO3, which consists of morphology-controlled synthesis and electronic properties functional modification. Besides the general synthesis methods, its gas-sensing properties and mechanism were briefly discussed. In conclusion, the application status of MoO3 in gas-sensing and the challenges still to be solved were summarized.
Collapse
Affiliation(s)
- Jingxuan Wang
- College of Engineering and Technology, Southwest University, Chongqing, China
| | - Qu Zhou
- College of Engineering and Technology, Southwest University, Chongqing, China
| | - Shudi Peng
- Chongqing Electric Power Research Institute, State Grid Chongqing Electric Power Company, Chongqing, China
| | - Lingna Xu
- College of Engineering and Technology, Southwest University, Chongqing, China
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Wang X, Liu F, Chen X, Lu G, Song X, Tian J, Cui H, Zhang G, Gao K. SnO2 core-shell hollow microspheres co-modification with Au and NiO nanoparticles for acetone gas sensing. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Song L, Dou K, Wang R, Leng P, Luo L, Xi Y, Kaun CC, Han N, Wang F, Chen Y. Sr-Doped Cubic In 2O 3/Rhombohedral In 2O 3 Homojunction Nanowires for Highly Sensitive and Selective Breath Ethanol Sensing: Experiment and DFT Simulation Studies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1270-1279. [PMID: 31822058 DOI: 10.1021/acsami.9b15928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years, it is urgent and challenging to fabricate highly sensitive and selective gas sensors for breath analyses. In this work, Sr-doped cubic In2O3/rhombohedral In2O3 homojunction nanowires (NWs) are synthesized by one-step electrospun technology. The Sr doping alters the cubic phase of pure In2O3 into the rhombohedral phase, which is verified by the high-resolution transmittance electron microscopy, X-ray diffraction, and Raman spectroscopy, and is attributable to the low cohesive energy as calculated by the density functional theory (DFT). As a proof-of-concept of fatty liver biomarker sensing, ethanol sensors are fabricated using the electrospun In2O3 NWs. The results show that 8 wt % Sr-doped In2O3 shows the highest ethanol sensing performance with a high response of 21-1 ppm, a high selectivity over other interfering gases such as methanol, acetone, formaldehyde, toluene, xylene, and benzene, a high stability measured in 6 weeks, and also a high resistance to high humidity of 80%. The outstanding ethanol sensing performance is attributable to the enhanced ethanol adsorption by Sr doping as calculated by DFT, the stable rhombohedral phase and the preferred (104) facet exposure, and the formed homojunctions favoring the electron transfer. All these results show the effective structural modification of In2O3 by Sr doping, and also the great potency of the homojunction Sr-doped In2O3 NWs for highly sensitive, selective, and stable breath ethanol sensing.
Collapse
Affiliation(s)
- Longfei Song
- College of Physics and Cultivation Base for State Key Laboratory , Qingdao University , Qingdao 266071 , China
- State Key Laboratory of Multiphase Complex Systems , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Kunpeng Dou
- College of Information Science and Engineering , Ocean University of China , Qingdao 266100 , China
| | - Rongrong Wang
- Department of Pharmacy , The Affiliated Hospital of Qingdao University , Qingdao 266003 , China
| | - Ping Leng
- Department of Pharmacy , The Affiliated Hospital of Qingdao University , Qingdao 266003 , China
| | - Linqu Luo
- College of Physics and Cultivation Base for State Key Laboratory , Qingdao University , Qingdao 266071 , China
| | - Yan Xi
- College of Physics and Cultivation Base for State Key Laboratory , Qingdao University , Qingdao 266071 , China
| | - Chao-Cheng Kaun
- Research Center for Applied Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Ning Han
- State Key Laboratory of Multiphase Complex Systems , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Fengyun Wang
- College of Physics and Cultivation Base for State Key Laboratory , Qingdao University , Qingdao 266071 , China
| | - Yunfa Chen
- State Key Laboratory of Multiphase Complex Systems , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|