1
|
Cruz-Barrera M, Izquierdo-García LF, Gómez-Marroquín M, Santos-Díaz A, Uribe-Gutiérrez L, Moreno-Velandia CA. Hydrogel capsules as new delivery system for Trichoderma koningiopsis Th003 to control Rhizoctonia solani in rice (Oryza sativa). World J Microbiol Biotechnol 2024; 40:108. [PMID: 38403797 PMCID: PMC10894772 DOI: 10.1007/s11274-024-03897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
The incorporation of biological control agents (BCAs) such as Trichoderma spp. in agricultural systems favors the transition towards sustainable practices of plant nutrition and diseases control. Novel bioproducts for crop management are called to guarantee sustainable antagonism activity of BCAs and increase the acceptance of the farmers. The encapsulation in polymeric matrices play a prominent role for providing an effective carrier/protector and long-lasting bioproduct. This research aimed to study the influence of biopolymer in hydrogel capsules on survival and shelf-life of T. koningiopsis. Thus, two hydrogel capsules prototypes based on alginate (P1) and amidated pectin (P2), containing conidia of T. koningiopsis Th003 were formulated. Capsules were prepared by the ionic gelation method and calcium gluconate as crosslinker. Conidia releasing under different pH values of the medium, survival of conidia in drying capsules, storage stability, and biocontrol activity against rice sheath blight (Rhizoctonia solani) were studied. P2 prototype provided up to 98% survival to Th003 in fluid bed drying, faster conidia releasing at pH 5.8, storage stability greater than 6 months at 18 °C, and up to 67% of disease reduction. However, both biopolymers facilitate the antagonistic activity against R. solani, and therefore can be incorporated in novel hydrogel capsules-based biopreparations. This work incites to develop novel biopesticides-based formulations with potential to improve the delivery process in the target site and the protection of the active ingredient from the environmental factors.
Collapse
Affiliation(s)
- Mauricio Cruz-Barrera
- Bioproducts Department, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia.
| | - Luisa Fernanda Izquierdo-García
- Agricultural Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia
| | - Magda Gómez-Marroquín
- Agricultural Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia
| | - Adriana Santos-Díaz
- Agricultural Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia
| | - Liz Uribe-Gutiérrez
- Agricultural Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia
| | - Carlos Andrés Moreno-Velandia
- Agricultural Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia
| |
Collapse
|
2
|
Martinez Y, Ribera J, Schwarze FWMR, De France K. Biotechnological development of Trichoderma-based formulations for biological control. Appl Microbiol Biotechnol 2023; 107:5595-5612. [PMID: 37477696 PMCID: PMC10439859 DOI: 10.1007/s00253-023-12687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Trichoderma spp. are a genus of well-known fungi that promote healthy growth and modulate different functions in plants, as well as protect against various plant pathogens. The application of Trichoderma and its propagules as a biological control method can therefore help to reduce the use of chemical pesticides and fertilizers in agriculture. This review critically discusses and analyzes groundbreaking innovations over the past few decades of biotechnological approaches to prepare active formulations containing Trichoderma. The use of various carrier substances is covered, emphasizing their effects on enhancing the shelf life, viability, and efficacy of the final product formulation. Furthermore, the use of processing techniques such as freeze drying, fluidized bed drying, and spray drying are highlighted, enabling the development of stable, light-weight formulations. Finally, promising microencapsulation techniques for maximizing the performance of Trichoderma spp. during application processes are discussed, leading to the next-generation of multi-functional biological control formulations. KEY POINTS: • The development of carrier substances to encapsulate Trichoderma propagules is highlighted. • Advances in biotechnological processes to prepare Trichoderma-containing formulations are critically discussed. • Current challenges and future outlook of Trichoderma-based formulations in the context of biological control are presented.
Collapse
Affiliation(s)
- Yolanda Martinez
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose and Wood Materials, St. Gallen, Switzerland
| | - Javier Ribera
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose and Wood Materials, St. Gallen, Switzerland
| | - Francis W M R Schwarze
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose and Wood Materials, St. Gallen, Switzerland.
| | - Kevin De France
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose and Wood Materials, St. Gallen, Switzerland.
- Department of Chemical Engineering, Queen's University, Kingston, Canada.
| |
Collapse
|
3
|
Rodrigues AO, May De Mio LL, Soccol CR. Trichoderma as a powerful fungal disease control agent for a more sustainable and healthy agriculture: recent studies and molecular insights. PLANTA 2023; 257:31. [PMID: 36602606 DOI: 10.1007/s00425-022-04053-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Molecular studies have elucidated Trichoderma's biocontrol mechanisms. Since fungicides have limited use, Trichoderma could control disease by new metabolic routes and epigenetic alterations. Due to environmental and health hazards, agrochemicals have been a concern since they were introduced in agriculture. Trichoderma, a well-known fungal genus with different mechanisms of action, is an alternative to pesticides and a great tool to help minimize disease incidence. Trichoderma-treated plants mainly benefit from disease control and growth promotion through priming, and these fungi can modulate plants' gene expression by boosting their immune system, accelerating their response to threats, and building stress tolerance. The latest studies suggest that epigenetics is required for plant priming and could be essential for growth promotion, expanding the possibilities for producing new resistant plant varieties. Trichoderma's propagules can be mass produced and formulated depending on the delivery method. Microsclerotia-based bioproducts could be a promising way of increasing the reliability and durability of marketed products in the field, as well as help guarantee longer shelf life. Developing novel formulations and selecting efficient Trichoderma strains can be tiresome, but patent search indicates an increase in the industrialization and commercialization of technologies and an expansion of companies' involvement in research and development in this field. Although Trichoderma is considered a well-known fungal genus, it still attracts the attention of large companies, universities, and research institutes around the world.
Collapse
Affiliation(s)
- Amanda O Rodrigues
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, 81531-908, Brazil
| | - Louise L May De Mio
- Department of Crop Science and Protection, Federal University of Paraná (UFPR), Curitiba, PR, 80035-050, Brazil
| | - Carlos R Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, 81531-908, Brazil.
| |
Collapse
|
4
|
Braga ABAC, Costa CJM, Ribeiro EJ, Zotarelli MF, Santos LD. Evaluation of the microencapsulation process of conidia of Trichoderma asperellum by spray drying. Braz J Microbiol 2022; 53:1871-1880. [PMID: 36173601 PMCID: PMC9679129 DOI: 10.1007/s42770-022-00832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023] Open
Abstract
Microencapsulation of microorganisms has been studied to increase product shelf life and stability to enable the application in sustainable agriculture. In this study, the microencapsulation of Trichoderma asperellum conidia by spray drying (SD) was evaluated. The objective was to assess the effect of drying air temperature and wall material (maltodextrin DE20, MD20) concentration on the microencapsulation and to identify the optimum conditions to produce, in high yield, microparticles with low moisture, high conidial viability and conidial survival. Microparticles were characterized in terms of morphology, particle size, and shelf life. A central composite rotatable design (CCRD) was used to evaluate the effect of operating parameters on drying yield (DY), moisture content, conidial viability (CV), and conidial survival (SP). Microencapsulation experiments were carried out under optimum conditions to validate the obtained model. The optimum temperature and MD20/conidia dry weight ratios were 80 °C and 1:4.5, respectively, which afforded a drying yield of 63.85 ± 0.86%, moisture content of 4.92 ± 0.07%, conidial viability of 87.10 ± 1.16%, and conidial survival of 85.78 ± 2.88%. Microencapsulation by spray drying using MD20 as wall material extended the viability of conidia stored at 29 °C compared with the control. The mathematical models accurately predicted all the variables studied, and the association of the microencapsulation technique using DE20 maltodextrin was able to optimize the process and increase the product's shelf life. It was also concluded that high inlet air temperatures negatively affected conidia survival, especially above 100 °C.
Collapse
Affiliation(s)
| | | | - Eloízio Júlio Ribeiro
- Faculty of Chemical Engineering, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Líbia Diniz Santos
- Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas, MG, Brazil.
| |
Collapse
|
5
|
Martins PMM, Batista NN, Santos LD, Dias DR, Schwan RF. Microencapsulation by spray drying of coffee epiphytic yeasts Saccharomyces cerevisiae CCMA 0543 and Torulaspora delbrueckii CCMA 0684. Braz J Microbiol 2022; 53:1565-1576. [PMID: 35676493 PMCID: PMC9433631 DOI: 10.1007/s42770-022-00776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/28/2022] [Indexed: 11/02/2022] Open
Abstract
The objective of this work was to evaluate the microencapsulation feasibility of Saccharomyces cerevisiae CCMA 0543 and Torulaspora delbrueckii CCMA 0684 in three different compositions of wall material by spray-dryer. The yeasts (109 CFU mL-1) were microencapsulated separately using maltodextrin (15%), maltodextrin (15%) with sucrose (2%), or maltose (2%) as wall material. The viability was evaluated for 6 months at two different temperatures (7 and 25 °C). The yield, cell viability after spray drying, and characterization of the microcapsules were performed. Results indicate that cell viability ranged between 94.06 and 97.97%. After 6 months, both yeasts stored at 7 °C and 25 °C presented 107 and 102 CFU mL-1, respectively. Regarding Fourier-transform infrared spectroscopy analysis, all microencapsulated yeasts presented typical spectra footprints of maltodextrin. After 6 months of storage, S. cerevisiae CCMA 0543 obtained a 10.8% increase in cell viability using maltodextrin with maltose as wall material compared to maltodextrin and maltodextrin with sucrose. However, T. delbrueckii CCMA 0684 obtained a 13.5% increase in cell viability using only maltodextrin. The study showed that maltodextrin as a wall material was efficient in the microencapsulation of yeasts. It is possible to assume that maltose incorporation increased the cell viability of S. cerevisiae CCMA 0543 during storage.
Collapse
Affiliation(s)
| | | | - Líbia Diniz Santos
- Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | | | | |
Collapse
|
6
|
Martins PMM, Batista NN, Santos LD, Dias DR, Schwan RF. Microencapsulation of epiphytic coffee yeasts by spray drying using different wall materials: Implementation in coffee medium. Int J Food Microbiol 2022; 379:109839. [PMID: 35868147 DOI: 10.1016/j.ijfoodmicro.2022.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
The storage of microorganisms in liquid form is the main drawback of commercializing epiphytic coffee yeasts. This work aimed to evaluate the fermentative performance of microencapsulated yeasts by spray drying in a coffee peel and pulp media (CPM). The yeasts, Saccharomyces cerevisiae CCMA 0543, Torulaspora delbrueckii CCMA 0684, and Meyerozyma caribbica CCMA 1738, were microencapsulated using maltodextrin DE10 (MD), high maltose (MA), and whey powder (WP) as wall materials. A Central Composite Rotational Design (CCRD) was used to investigate the effect of operating parameters on the microcapsules' cell viability, drying yield, and water activity. Yeasts reached cell viability and drying yields above 90 and 50 %, respectively. WP maintained the cell viability of the three yeasts over 90 days of storage at room temperature (25 °C) and was selected as a wall material for the three yeasts. M. caribbica showed to be more sensitive to spray drying and less resistant to storage. Some differences were found in the fermentation of the CPM medium, but the microencapsulated yeasts maintained their biotechnological characteristics. Therefore, the microencapsulation of epiphytic coffee yeasts by spray drying was promising to be used in the coffee fermentation process.
Collapse
Affiliation(s)
| | - Nádia Nara Batista
- Biology Department, Federal University of Lavras, CEP 37200-900 Lavras, MG, Brazil
| | - Líbia Diniz Santos
- Federal University of Uberlândia, Faculty of Chemical Engineering, 290, CEP 38700-103 Patos de Minas, MG, Brazil
| | - Disney Ribeiro Dias
- Food Sciences Department, Federal University of Lavras, CEP 37200-900 Lavras, MG, Brazil
| | | |
Collapse
|
7
|
Choosing the appropriate wall materials for spray-drying microencapsulation of natural bioactive ingredients: Taking phenolic compounds as examples. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.08.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|