1
|
Majumder S, Chatterjee S, Basnet P, Mukherjee J. Plasmonic photocatalysis of concentrated industrial LASER dye: Rhodamine 6G. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Shi X, Hong J, Kang L, Song G, Lin J, Mai X, Naik N, Guo Z. Significant improvement on selectivity and capacity of glycine-modified FeCo-layered double hydroxides in the removal of As (V) from polluted water. CHEMOSPHERE 2021; 281:130943. [PMID: 34289612 DOI: 10.1016/j.chemosphere.2021.130943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/25/2021] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
A series of novel Fe/Co layered double hydroxides modified with glycine (named as FeCo-LDH@G) were prepared and served as high-performance adsorbents for As (V). With a Fe/Co mole ratio of 1:1, the Fe0·02Co0.02-LDH@G adsorbents achieved significant improvements on the adsorption selectivity and capacity for As (V). The As (V) adsorption by Fe0·02Co0.02-LDH@G follows Langmuir isotherm model and pseudo-second-order kinetics model. The maximum adsorption capacity is 820 mg g-1 and the equilibrium reaches in 120 min. Under the assistance of electrochemical devices, the Fe0·02Co0.02-LDH@G adsorbent was regenerated and the adsorption capacity for As (V) was dropped only about 13.41% in 5 cycles. These excellent performances make Fe0·02Co0.02-LDH@G as promising As (V) adsorbents for commercial wastewater treatments.
Collapse
Affiliation(s)
- Xiaofeng Shi
- School of Environment and Safety Engineering, North University of China, Taiyuan, China.
| | - Junmao Hong
- School of Materials Science and Engineering, North University of China, Taiyuan, China
| | - Le Kang
- School of Environment and Safety Engineering, North University of China, Taiyuan, China
| | - Gang Song
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jing Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Xianmin Mai
- School of Urban Planning and Architecture, Southwest Minzu University, Chengdu, 610041, China.
| | - Nithesh Naik
- Department of Mechanical & Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Zhang N, Cheng N, Liu Q. Functionalized Biomass Carbon-Based Adsorbent for Simultaneous Removal of Pb 2+ and MB in Wastewater. MATERIALS 2021; 14:ma14133537. [PMID: 34201910 PMCID: PMC8269509 DOI: 10.3390/ma14133537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/26/2023]
Abstract
It is of great significance to realize the sustainable development of the environment to synthesize functional materials by value-added utilization of waste resources. Herein, a composite material of polyacrylic acid/lignosulfonate sodium/cotton biochar (PAA/LS/BC) was successfully prepared by grafting polyacrylic acid with functionalized waste cotton biochar and lignosulfonate sodium. The obtained absorbent showed prominent capture ability toward Pb2+ and methylene blue (MB) with capture characteristics of the pseudo-second-order model and Langmuir isotherm model. This experiment explored the adsorption performance of the adsorbent for pollutants at different conditions, and further revealed the selective adsorption of Pb2+ and MB in the mixed system. Analysis confirmed that electrostatic attraction and complexation are the most critical methods to remove contaminants. Additionally, the regeneration and stability experiment showed that the adsorption capacity of PAA/LS/BC for pollutants did not significantly decrease after five runs of adsorption–desorption. Various results can demonstrate that the adsorbent has excellent performance for removing pollutants and can be used as a material with development potential in the field of adsorption.
Collapse
Affiliation(s)
- Nannan Zhang
- Modern Experiment Center, Harbin Normal University, Harbin 150025, China
- Correspondence: (N.Z.); (Q.L.)
| | - Nan Cheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
| | - Qing Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Correspondence: (N.Z.); (Q.L.)
| |
Collapse
|
4
|
Shi X, Mai X, Wei R, Ma Y, Naik N, He Z, Chen Y, Wang C, Dong B, Guo Z. Removing Pb2+ and As(V) from polluted water by highly reusable Fe-Mg metal-organic complex adsorbent. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Shi X, Hong J, Li J, Kong S, Song G, Naik N, Guo Z. Excellent selectivity and high capacity of As (V) removal by a novel lignin-based adsorbent doped with N element and modified with Ca 2. Int J Biol Macromol 2021; 172:299-308. [PMID: 33418048 DOI: 10.1016/j.ijbiomac.2021.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
As one of the most significant natural polymer with the highest annual yield, lignin has been applied in the treatment of wastewater to remove heavy metal ions. However, there are still some shortages, such as low reactivity, difficulties in adsorbing oxyanions and low selectivity on specific oxyanions. To improve its adsorption properties, a novel lignin-based adsorbent was prepared in this study, doped with nitrogen by Mannich reaction, using triethylenetetramine (TETA) as N source, and further modified with Ca2+. The adsorption of Ca, N-co-doped lignin (Ca@N-Lig) for As (V), Cr (VI) and P (V) was studied. The Ca@N-Lig shows high capacity, excellent selectivity and prominent regeneration ability for As (V) adsorption. The adsorption of Ca@N-Lig for As (V) followed the Langmuir isotherm model and the pseudo-second-order kinetics model, yielding a maximum adsorption capacity of 681.59 mg·g-1 and a fast adsorption equilibrium within 30 min. Ca@N-Lig has an excellent regeneration ability on the adsorption of As (V) with a decrease of about 15.60% after 5 adsorption/desorption cycles. This study offers an efficient way to remove As (V) from polluted water.
Collapse
Affiliation(s)
- Xiaofeng Shi
- School of Environment and Safety Engineering, North University of China, Taiyuan, China.
| | - Junmao Hong
- School of Materials Science and Engineering, North University of China, Taiyuan, China
| | - Junhua Li
- School of Environment and Safety Engineering, North University of China, Taiyuan, China.
| | - Shifang Kong
- School of Traffic & Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| | - Gang Song
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Nithesh Naik
- Department of Mechanical & Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
6
|
Cho CW, Zhao Y, Choi JW, Kim JA, Bediako JK, Lin S, Song MH, Yun YS. Prediction of organic pollutant removal using Corynebacterium glutamicum fermentation waste. ENVIRONMENTAL RESEARCH 2021; 192:110271. [PMID: 33002506 DOI: 10.1016/j.envres.2020.110271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The disposal of bio-waste (e.g., Corynebacterium glutamicum) produced by the fermentation industry is a serious problem and has a negative impact on economic returns. Some fermentation waste can be recycled as livestock feed, but much cannot be used. Therefore, other recycling methods must be developed to increase its applications, for example, as an environmentally friendly adsorbent for the removal or recovery of chemicals. To broaden its application as an adsorbent, we carried out comprehensive experimental and theoretical analysis. From the experiments, adsorption affinity values between C. glutamicum and micropollutants were measured, and, based on the experimental values, we developed a predictive model. The experimental results reveal that the degree of adsorption is dependent on the structural properties of the micropollutants. In particular, the adsorbent has remarkable adsorption ability toward cations, whereas anionic and neutral compounds interact weakly with the adsorbent. In addition, we found that adsorption is affected by the sodium chloride concentration. Briefly, an increase in salt concentration increases the adsorption of anions, whereas the opposite behavior is observed for cations. In contrast, the adsorption of neutral compounds was not affected by the presence of salt. The modeling studies revealed that a linear free energy relationship model can be used to predict the adsorption affinity. Based on the developed model, we found that hydrogen-bond basicity, anionic coulombic interactions, and molecular volume are the main contributing factors to the adsorption model. However, to achieve the best predictability (a coefficient of determination (R2) of 0.902), additional parameters, such as the dipolarity/polarizability and dispersive interaction, should be included. This indicates that adsorption is a product of complex interactions.
Collapse
Affiliation(s)
- Chul-Woong Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea
| | - Yufeng Zhao
- College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, Hubei Province, China
| | - Jong-Won Choi
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-dearo, Deokjin-gu, Jeonju, 54896, Chonbuk, South Korea
| | - Jeong-Ae Kim
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-dearo, Deokjin-gu, Jeonju, 54896, Chonbuk, South Korea
| | | | - Shuo Lin
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-dearo, Deokjin-gu, Jeonju, 54896, Chonbuk, South Korea
| | - Myung-Hee Song
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-dearo, Deokjin-gu, Jeonju, 54896, Chonbuk, South Korea
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-dearo, Deokjin-gu, Jeonju, 54896, Chonbuk, South Korea.
| |
Collapse
|
7
|
Hierarchical mesoporous ZIF-67@LDH for efficient adsorption of aqueous Methyl Orange and Alizarine Red S. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Hoijang S, Wangkarn S, Ieamviteevanich P, Pinitsoontorn S, Ananta S, Randall Lee T, Srisombat L. Silica-coated magnesium ferrite nanoadsorbent for selective removal of methylene blue. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Jia J, Hao X, Chang Y, Jia M, Wen Z. Rational design of Cu 3PdN nanocrystals for selective electroreduction of carbon dioxide to formic acid. J Colloid Interface Sci 2020; 586:491-497. [PMID: 33190830 DOI: 10.1016/j.jcis.2020.10.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
The selective electrochemical reduction of CO2 yields value-added products that are important renewable energy resources for carbon recycling. In this study, Cu3PdN nanocrystals (NCs) exhibited higher electrocatalytic activity for carbon dioxide (CO2) reduction to formic acid (HCOOH) than as-prepared Cu3N and Cu3Pd NCs. In addition, the reaction yielded small amounts of CO (<5%), H2, and HCOOH as the main products, and the electrocatalytic activity of the Cu NCs was significantly enhanced by modification with N and Pd. This work demonstrates a simple and effective strategy for improving the electrochemical reduction of CO2.
Collapse
Affiliation(s)
- Jingchun Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Xiaokai Hao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ying Chang
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China
| | - Meilin Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China.
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
10
|
Mondal B, Bairagi D, Nandi N, Hansda B, Das KS, Edwards-Gayle CJC, Castelletto V, Hamley IW, Banerjee A. Peptide-Based Gel in Environmental Remediation: Removal of Toxic Organic Dyes and Hazardous Pb 2+ and Cd 2+ Ions from Wastewater and Oil Spill Recovery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12942-12953. [PMID: 33078952 DOI: 10.1021/acs.langmuir.0c02205] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A dipeptide-based synthetic amphiphile bearing a myristyl chain has been found to form hydrogels in the pH range 6.9-8.5 and organogels in various organic solvents including petroleum ether, diesel, kerosene, and petrol. These organogels and hydrogels have been thoroughly studied and characterized by different techniques including high-resolution transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and rheology. It has been found that the xerogel obtained from the peptide gelator can trap various toxic organic dyes from wastewater efficiently. Moreover, the hydrogel has been used to remove toxic heavy metal ions Pb2+ and Cd2+ from wastewater. Dye adsorption kinetics has been studied, and it has been fitted by using the Freundlich isotherm equation. Interestingly, the gelator amphiphilic peptide gels fuel oil, kerosene, diesel, and petrol in a biphasic mixture of salt water and oil within a few seconds. This indicates that these gels not only may find application in oil spill recovery but also can be used to remove toxic organic dyes and hazardous toxic metal ions from wastewater. Moreover, the gelator can be recycled several times without significant loss of activity, suggesting the sustainability of this new gelator. This holds future promise for environmental remediation by using peptide-based gelators.
Collapse
Affiliation(s)
- Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Dipayan Bairagi
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nibedita Nandi
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Biswanath Hansda
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | | - Valeria Castelletto
- Department of Chemistry, University of Reading, White Knights, Reading RG6 6AD, U.K
| | - Ian W Hamley
- Department of Chemistry, University of Reading, White Knights, Reading RG6 6AD, U.K
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
Sun Z, Wu X, Qu K, Huang Z, Liu S, Dong M, Guo Z. Bimetallic metal-organic frameworks anchored corncob-derived porous carbon photocatalysts for synergistic degradation of organic pollutants. CHEMOSPHERE 2020; 259:127389. [PMID: 32590175 DOI: 10.1016/j.chemosphere.2020.127389] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) are promising for photocatalysis owing to their excellent structure and performance. Unfortunately, poor stability in both aqueous solutions and high temperatures and lack of adsorption centers during reactions limit their practical applications. Herein, a bimetallic MOF anchored corncob calcined derived activated carbon (CCAC) was successfully prepared by a one-step solvothermal method. Benefiting from unique structures and synergetic effect, the porous carbon provided a high specific surface area for stable MOF support and served as an organic pollutant buffer-reservoir, which was advantageous for efficient photocatalytic degradation of organic pollutants. The optimized MOF/CCAC-5 samples possessed excellent visible light degradation rate, i.e., 100% for Rh B, more than 96% for six mixed dyes, and 98% for tetracycline. This prominent photocatalytic activity was caused by active species, including photoelectrons (e-), photo-holes (h+) and superoxide free radicals (•O2-). The transient photocurrent response and electrochemical impedance tests showed that MOF/CCAC-5 exhibited a relatively high charge separation and low carrier recombination rate. Cyclic and simulation experiments indicated high reusability, stability and universality of the composite photocatalysts. These exciting results provide new pathways for the fabrication of MOFs anchored porous carbon materials.
Collapse
Affiliation(s)
- Zhe Sun
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoliang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Keqi Qu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China
| | - Zhanhua Huang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China.
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China; Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| | - Zhanhua Guo
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Olad A, Bastanian M, Aber S, Zebhi H. Ion-crosslinked carboxymethyl cellulose/polyaniline bio-conducting interpenetrated polymer network: preparation, characterization and application for an efficient removal of Cr(VI) from aqueous solution. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00877-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Ng AJ, Sheehan NP, Martinez E, Murray K, McCollum C, Flagg T, Boyle J, Bier P. Distributed treatment systems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1418-1424. [PMID: 32574412 DOI: 10.1002/wer.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
This section presents a review of the scientific literature published in 2019 on topics relating to distributed treatment systems. This review is divided into the following sections: constituent removal, treatment technologies, planning and treatment management, and other topics. PRACTITIONER POINTS: Highlights changes and innovation in removal techniques and technologies in water treatment. Reviews management systems of distributed treatment systems. Discusses point-of-use treatment systems.
Collapse
Affiliation(s)
- Andrew J Ng
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Nathaniel P Sheehan
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Erick Martinez
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York, USA
| | - Kyle Murray
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Caleb McCollum
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Tim Flagg
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - John Boyle
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Peter Bier
- U.S. Army Combined Arms Center, Fort Leavenworth, Kansas, USA
| |
Collapse
|
14
|
He M, Nan Z. 3D-structured CuCo2S4 as an excellent Fenton-like catalyst under alkaline solution. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Cu/N doped lignin for highly selective efficient removal of As(v) from polluted water. Int J Biol Macromol 2020; 161:147-154. [DOI: 10.1016/j.ijbiomac.2020.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
|
16
|
Photocatalytic degradation of organic dye and phytohormone by a Cu(II) complex powder catalyst with added H2O2. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125147] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Dhiman N, Jasrotia T, Sharma P, Negi S, Chaudhary S, Kumar R, Mahnashi MH, Umar A, Kumar R. Immobilization interaction between xenobiotic and Bjerkandera adusta for the biodegradation of atrazine. CHEMOSPHERE 2020; 257:127060. [PMID: 32505945 DOI: 10.1016/j.chemosphere.2020.127060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The aim of the present work is to evaluate the ability of 'fungi' for the biodegradation of recalcitrant xenobiotic compound, 'Atrazine' in batch liquid cultures. Different parameters like pH (2.0-8.0) temperature (16-32 °C), biomass (1-5 g), and concentration (25-100 ppm) were optimized for the efficient degradation of atrazine. The decomposition behavior of atrazine is analyzed with the help of Fourier Transform Infrared (FTIR) spectroscopy. Herein, we have reported that the Bjerkandera adusta possess high removal efficiency of the xenobiotic compound (atrazine) up to 92%. The fungal strain investigated could prove to be a valuable active pesticide degrading micro-organism, with high detoxification values. These results are useful for improved understanding and prediction of the behavior and fate of B. adusta in the bio-purification of wastewater contaminated with xenobiotics. Thus providing a new and green approach for the remediation of toxicants without altering the environmental components.
Collapse
Affiliation(s)
- Nikita Dhiman
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Teenu Jasrotia
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India; Department of Chemistry and Center of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Priyanka Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Sushma Negi
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Savita Chaudhary
- Department of Chemistry and Center of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Raman Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), 133207, Haryana, India
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia.
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
18
|
Jaiswal KK, Dutta S, Pohrmen CB, Verma R, Kumar A, Ramaswamy AP. Bio-waste chicken eggshell-derived calcium oxide for photocatalytic application in methylene blue dye degradation under natural sunlight irradiation. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1813769 10.1080/24701556.2020.1813769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Krishna Kumar Jaiswal
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
- Algae Research and Bio-energy Laboratory, Department of Chemistry, Uttaranchal University, Dehradun, India
| | - Swapnamoy Dutta
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
| | - Cheryl Bernice Pohrmen
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
| | - Ravikant Verma
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | - Arvind Kumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | - Arun Prasath Ramaswamy
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
| |
Collapse
|
19
|
Jaiswal KK, Dutta S, Pohrmen CB, Verma R, Kumar A, Ramaswamy AP. Bio-waste chicken eggshell-derived calcium oxide for photocatalytic application in methylene blue dye degradation under natural sunlight irradiation. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1813769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Krishna Kumar Jaiswal
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
- Algae Research and Bio-energy Laboratory, Department of Chemistry, Uttaranchal University, Dehradun, India
| | - Swapnamoy Dutta
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
| | - Cheryl Bernice Pohrmen
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
| | - Ravikant Verma
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | - Arvind Kumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | - Arun Prasath Ramaswamy
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
| |
Collapse
|
20
|
Akpomie KG, Conradie J. Efficient synthesis of magnetic nanoparticle-Musa acuminata peel composite for the adsorption of anionic dye. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Zheng B, Ge S, Wang S, Shao Q, Jiao C, Liu M, Das R, Dong B, Guo Z. Effect of γ-aminopropyltriethoxysilane on the properties of cellulose acetate butyrate modified acrylic waterborne coatings. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104657] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Liu X, Shao Q, Wang Y, Zheng Y, Song H, Wang J, Liu H, Guo Z. One-pot In Situ Microwave Hydrothermally Grown Zeolitic Imidazolate Framework-8 on ZnIn-Layered Double Oxides toward Enhanced Methylene Blue Photodegradation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaoxiao Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qian Shao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yingming Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yuanpeng Zheng
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Song
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Junxiang Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hu Liu
- Key Laboratory of Materials Processing and Mold , Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, China
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
23
|
Wang Y, Ge S, Cheng W, Hu Z, Shao Q, Wang X, Lin J, Dong M, Wang J, Guo Z. Microwave Hydrothermally Synthesized Metal-Organic Framework-5 Derived C-doped ZnO with Enhanced Photocatalytic Degradation of Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9658-9667. [PMID: 32787068 DOI: 10.1021/acs.langmuir.0c00395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
C-doped ZnO particles have been successfully prepared by the calcination using microwave hydrothermally prepared metal-organic framework-5 (MOF-5) as the precursor. MOF-5 was turned into C-doped ZnO through calcination at 500 °C, and its cubic shape was well-maintained. X-ray photoelectron spectroscopic studies confirmed the C-doping in the ZnO. The as-prepared C-doped ZnO demonstrated a Rhodamine B (RhB) degradation efficiency of 98% in 2 h under an solar-simulated light irradiation, much higher than that of C-doped ZnO derived from MOF-5 synthesized by the ordinary hydrothermal method. The trapping experiment revealed that the crucial factors in the RhB removal were photogenerated h+ and •O2-.
Collapse
Affiliation(s)
- Yingming Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Shengsong Ge
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Wei Cheng
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Zunju Hu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Qian Shao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Xiaojing Wang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Jing Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Junxiang Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
24
|
Zhang Y, Shao Q, Chen C, Jiang H, Su F, Hu Q, Guo Z. Microwave-hydrothermal synthesis of beta-bismuth (III) oxide nanopowders and their enhanced photocatalytic properties. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Wu M, Ge S, Jiao C, Yan Z, Jiang H, Zhu Y, Dong B, Dong M, Guo Z. Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122547] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Sun H, Du Y, Gao C, Iftikhar, Long J, Li S, Shao L. Pressure-assisted in-depth hydrophilic tailoring of porous membranes achieving high water permeability, excellent fouling resistance and superior antimicrobial ability. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Xu G, Zhang L, Yu W, Sun Z, Guan J, Zhang J, Lin J, Zhou J, Fan J, Murugadoss V, Guo Z. Low optical dosage heating-reduced viscosity for fast and large-scale cleanup of spilled crude oil by reduced graphene oxide melamine nanocomposite adsorbents. NANOTECHNOLOGY 2020; 31:225402. [PMID: 32066134 DOI: 10.1088/1361-6528/ab76eb] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heating under low solar radiation intensity is demonstrated to facilitate the cleaning of crude oil by the hydrophobic nanocomposite adsorbents of reduced graphene oxide (RGO) melamine sponge (MS@RGO) foams. The heat generated by the irradiation reduces the viscosity of the crude oil, and consequently increases the oil-diffusion coefficient of the pores of the MS@RGO foams and speeds up the oil-sorption rate. Even under a solar radiation intensity as low as 2 kW m-2, the temperature of crude oil rapidly rises to 68 °C or higher within 10 min. It only takes 29 s to completely absorb 6 g of crude oil at 60 °C by three tiny pieces of MS@RGO foam. This work makes better use of the excellent photothermal conversion characteristics of crude oil, and its photothermal conversion mechanism under simulated solar radiation is also discussed. This methodology can be adopted to clean up viscous crude oil or extract other chemicals effectively at a large scale, and provides a complete solution for the cleanup of crude oil in the sea or on the beach for actual engineering applications.
Collapse
Affiliation(s)
- Guangqiao Xu
- Research Center of Resource Recycling Science and Engineering, School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu X, Shao Q, Zhang Y, Wang X, Lin J, Gan Y, Dong M, Guo Z. Microwave hydrothermal synthesized ZnIn-layered double hydroxides derived ZnIn-layered double oxides for enhanced methylene blue photodegradation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124588] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Sun L, Shao Q, Zhang Y, Jiang H, Ge S, Lou S, Lin J, Zhang J, Wu S, Dong M, Guo Z. N self-doped ZnO derived from microwave hydrothermal synthesized zeolitic imidazolate framework-8 toward enhanced photocatalytic degradation of methylene blue. J Colloid Interface Sci 2020; 565:142-155. [DOI: 10.1016/j.jcis.2019.12.107] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/06/2019] [Accepted: 12/24/2019] [Indexed: 02/09/2023]
|
30
|
Zhang Z, Yue X, Duan Y, Rao Z. A study on the mechanism of oxidized quinoline removal from acid solutions based on persulfate-iron systems. RSC Adv 2020; 10:12504-12510. [PMID: 35497624 PMCID: PMC9051261 DOI: 10.1039/c9ra10556e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/11/2020] [Indexed: 11/21/2022] Open
Abstract
Quinoline (Qu) and its derivatives have been widely regarded as hazardous pollutants in the world because of their acute toxicity to humans and animals, and potential carcinogenic risks. In this study, a novel sulfate radical system co-activated by ferrous and ZVI was developed to remove Qu from acidic solutions. The optimal ratio of ferrous and ZVI in the system and the mechanism of Qu removal from acidic solutions are also explored. The ZVI can initiate activation using hydrogen ions, which are released from the reaction of Fe2+, organics and PS in acidic solutions. This may dramatically improve the overall removal efficiency of Qu. The results indicated that the initial removal rate of Qu increases from 85.8% to 92.9%. The cleavage pathway of Qu is speculated by Frontier molecular orbital (FMO) theory and verified by GC/MS analysis.
Collapse
Affiliation(s)
- Zhichun Zhang
- College of Environment Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China +86-351-3176581 +86-351-3176581
| | - Xiuping Yue
- College of Environment Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China +86-351-3176581 +86-351-3176581
| | - Yanqing Duan
- College of Environment Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China +86-351-3176581 +86-351-3176581
| | - Zhu Rao
- Environmental Organic Geochemistry, Key Laboratory of Eco-Geochemical, Ministry of Land and Resources, National Research Center for Geoanalysis Beijing China
| |
Collapse
|
31
|
Panchal P, Paul DR, Sharma A, Choudhary P, Meena P, Nehra S. Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water. J Colloid Interface Sci 2020; 563:370-380. [DOI: 10.1016/j.jcis.2019.12.079] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023]
|
32
|
Zhou N, Gong K, Hu Q, Cheng X, Zhou J, Dong M, Wang N, Ding T, Qiu B, Guo Z. Optimizing nanocarbon shell in zero-valent iron nanoparticles for improved electron utilization in Cr(VI) reduction. CHEMOSPHERE 2020; 242:125235. [PMID: 31698209 DOI: 10.1016/j.chemosphere.2019.125235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
A core-shell structured zero-valent iron@carbon (ZVI@C) nanocompoiste was designed to improve the electron utilization of ZVI in the Cr(VI) reduction. The porosity of carbon layer in ZVI@C was optimized for improving the efficiency of electron utilization of ZVI in the Cr(VI) reduction process. The porous structure of carbon layer was controllably synthesized by adjusting the carbon source and the ratio of C/Fe in the precursor. The glucose was suggested as the optimal carbon source, and a high specific surface area (37.067 m2/g) was reached for the prepared ZVI@C when the ratio of C/Fe was controlled at 20. These ZVI@C performed well on Cr(VI) reduction, e.g. a complete reduction of Cr(VI) (2 mg/L) to Cr(III) within 10 min. The removal capacity (800 mg/g) exceeded previously recorded ZVI based adsorbents. The pH and initial Cr(VI) concentration were demonstrated as the key factors for the efficient electron utilization of ZVI. Furthermore, the efficiency of electron utilization of the ZVI increased up to 80% when the concentration of Cr(VI) was 2000 mg/L and the pH was controlled at 3, which was much higher than 8% of the naked ZVI.
Collapse
Affiliation(s)
- Na Zhou
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Kedong Gong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Qian Hu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Juying Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China; Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, United States
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China; Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, United States
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Tao Ding
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, United States.
| |
Collapse
|
33
|
Effects of chlorinated polyethylene and antimony trioxide on recycled polyvinyl chloride/acryl-butadiene-styrene blends: Flame retardancy and mechanical properties. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122198] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Xu X, Fu Q, Gu H, Guo Y, Zhou H, Zhang J, Pan D, Wu S, Dong M, Guo Z. Polyaniline crystalline nanostructures dependent negative permittivity metamaterials. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122129] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Zhao J, Shao Q, Ge S, Zhang J, Lin J, Cao D, Wu S, Dong M, Guo Z. Advances in Template Prepared Nano-Oxides and their Applications: Polluted Water Treatment, Energy, Sensing and Biomedical Drug Delivery. CHEM REC 2020; 20:710-729. [PMID: 31944590 DOI: 10.1002/tcr.201900093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
The nano-oxide materials with special structures prepared by template methods have a good dispersion, regular structures and high specific surface areas. Therefore, in some areas, improved properties are observed than conventional bulk oxide materials. For example, in the treatment of dye wastewater, the treatment efficiency of adsorbents and catalytic materials prepared by template method was about 30 % or even higher than that of conventional samples. This review mainly focuses on the progress of inorganic, organic and biological templates in the preparation of micro- and nano- oxide materials with special morphologies, and the roles of the prepared materials as adsorbents and photocatalysts in dye wastewater treatment. The characteristics and advantages of inorganic, organic and biological template are also summarized. In addition, the applications of template method prepared oxides in the field of sensors, drug carrier, energy materials and other fields are briefly discussed with detailed examples.
Collapse
Affiliation(s)
- Junkai Zhao
- College of Chemical and Environmental Engineering, Shandong, University of Science and Technology, Qingdao, 266590, China
| | - Qian Shao
- College of Chemical and Environmental Engineering, Shandong, University of Science and Technology, Qingdao, 266590, China
| | - Shengsong Ge
- College of Chemical and Environmental Engineering, Shandong, University of Science and Technology, Qingdao, 266590, China
| | - Jiaoxia Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Jing Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dapeng Cao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China.,Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
36
|
Zhang Y, Shao Q, Jiang H, Liu L, Wu M, Lin J, Zhang J, Wu S, Dong M, Guo Z. One-step co-precipitation synthesis of novel BiOCl/CeO2composites with enhanced photodegradation of rhodamine B. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01524h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BiOCl/CeO2composites were synthesized by a facile one-step co-precipitation method and showed good photodegradation activity of rhodamine B (RhB).
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Qian Shao
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Heyun Jiang
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Lirong Liu
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Mingyang Wu
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Jing Lin
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou
- 510006 China
| | - Jiaoxia Zhang
- School of Materials Science and Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
- Integrated Composites Laboratory (ICL)
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou
- China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University)
- Ministry of Education
- National Engineering Research Center for Advanced Polymer Processing Technology
- Zhengzhou University
- Zhengzhou
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL)
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
| |
Collapse
|
37
|
Narayana C, Kumari P, Tiwari G, Sagar R. Triazole Linked N-Acetylglucosamine Based Gelators for Crude Oil Separation and Dye Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16803-16812. [PMID: 31775505 DOI: 10.1021/acs.langmuir.9b02704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Marine oil-spills have a long-lasting impact on the environment; therefore, it is a major concern in the scientific community to find a solution for remediation. Recently, phase selective organo-gelators emerged as potential materials for removal of oil from water through selective gelation. Herein, we report synthesis of a series of C-6 triazole linked N-acetylglucosamine derivatives, among which three have shown excellent selective gelation of organic solvents, diesel, petrol, and crude oils in water and seawater. We have studied phase selective gelation against different API grade crude oils (from light to heavy), and the gelation was achieved using nontoxic carrier solvent at room temperature in less than 15 min, and gelators were found useful for recovering crude oils. Critical gel concentration (CGC) of crude oil gelators was found to be 2.3-12% (w/v). The variable temperature NMR and FTIR experiments reveal that intermolecular hydrogen bonding was responsible for gel formation. Furthermore, a gelator was utilized for selective dye removal from water.
Collapse
Affiliation(s)
- Chintam Narayana
- Department of Chemistry, School of Natural Sciences , Shiv Nadar University (SNU) , NH91, Tehsil-Dadri , Gautam Buddha Nagar, Uttar Pradesh 201314 , India
| | - Priti Kumari
- Department of Chemistry, School of Natural Sciences , Shiv Nadar University (SNU) , NH91, Tehsil-Dadri , Gautam Buddha Nagar, Uttar Pradesh 201314 , India
| | - Ghanshyam Tiwari
- Department of Chemistry, Institute of Science , Banaras Hindu University , Varanasi , Uttar Pradesh 221005 , India
| | - Ram Sagar
- Department of Chemistry, School of Natural Sciences , Shiv Nadar University (SNU) , NH91, Tehsil-Dadri , Gautam Buddha Nagar, Uttar Pradesh 201314 , India
- Department of Chemistry, Institute of Science , Banaras Hindu University , Varanasi , Uttar Pradesh 221005 , India
| |
Collapse
|
38
|
Lin P, Nie L, Xu Z, Wei W, Cheng T, Chen Y, Zeng X. One-Step and Ligand-Free Modification of Au Nanoparticles on Highly Ordered TiO2 Nanotube Arrays for Effective Photoelectrocatalytic Decontamination. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Tiedong Cheng
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
| | - Youliang Chen
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
| | | |
Collapse
|
39
|
Solid polyaniline dendrites consisting of high aspect ratio branches self-assembled using sodium lauryl sulfonate as soft templates: Synthesis and electrochemical performance. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121808] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Gu H, Zhou X, Lyu S, Pan D, Dong M, Wu S, Ding T, Wei X, Seok I, Wei S, Guo Z. Magnetic nanocellulose-magnetite aerogel for easy oil adsorption. J Colloid Interface Sci 2019; 560:849-856. [PMID: 31708258 DOI: 10.1016/j.jcis.2019.10.084] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/16/2023]
Abstract
HYPOTHESIS Cellulose aerogels are a new category of high-efficiency adsorbents for treating oil spills and water pollution. However, the hydrophilic properties and recyclability of aerogels after adsorption hamper developments and applications. Combining both hydrophobic and magnetic properties are expected to improve their adsorption capacity and functionality. EXPERIMENTS In this study, the effect of oleic acid (OA) and nanomagnetite on the preparation of magnetic nanocellulose aerogels (called as NCA/OA/Fe3O4) by a mechanical mixing combined with freeze-drying method have been investigated. FINDINGS It has been found that the optimal condition for fabricating this NCA/OA/Fe3O4 aerogel is 0.4 wt% nanocellulose, 3 mg mL-1 OA and 0.5 wt% Fe3O4 in the aqueous solution. This aerogel has a very low density of 9.2 mg cm-3 and demonstrates a high adsorption capacity of 68.06 g g-1 for cyclohexane. In addition, this aerogel adsorbent demonstrates an excellent magnetic responsivity and can be easily recycled by a permanent magnet after adsorption. As a consequence, this hydrophobic magnetic NCA/OA/Fe3O4 aerogel is promising not only for easy oil and organic solvent adsorption but also potentially for other magnetic related applications.
Collapse
Affiliation(s)
- Hongbo Gu
- Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaomin Zhou
- Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shangyun Lyu
- Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Duo Pan
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China; Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37966, USA
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China; Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37966, USA
| | - Tao Ding
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xin Wei
- Department of Chemistry & Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Ilwoo Seok
- Mechanical Engineering, Arkansas State University, Jonesboro, AR 72401, USA
| | - Suying Wei
- Department of Chemistry & Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37966, USA
| |
Collapse
|
41
|
Song B, Wang Q, Wang L, Lin J, Wei X, Murugadoss V, Wu S, Guo Z, Ding T, Wei S. Carbon nitride nanoplatelet photocatalysts heterostructured with B-doped carbon nanodots for enhanced photodegradation of organic pollutants. J Colloid Interface Sci 2019; 559:124-133. [PMID: 31614317 DOI: 10.1016/j.jcis.2019.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/29/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
Abstract
Decorating electron-accepting materials on carbon nitride (C3N4) is a promising strategy to construct heterostructure catalysts for improved photocatalytic abilities. In this study, B-doped carbon-dots (B-C-dots) decorated C3N4 (C3N4/B-C-dots) catalysts were fabricated through the surface deposition. The benefits from integration of B-C-dots and C3N4 are four folds: (i) increasing surface area; (ii) improving visible light absorption; (iii) promoting the transfer of photoinduced carriers; and (iv) reducing the recombination of photoinduced carriers. The optimum photocatalytic activity of B-C-dots/C3N4 for Rhodamine B (Rh B) (or tetracycline hydrochloride (TC)) degradation was about 7.21 (6.56) and 4.80 (4.35) times higher than that of C3N4 and C-dots/C3N4, respectively, exhibiting both remarkable stability and repeatability. Moreover, enhanced photocatalytic activity of C3N4/B-C-dots could also be attributed to the type-II heterojunction formed between C3N4 and B-C-dots caused by B doping.
Collapse
Affiliation(s)
- Bo Song
- Marine College, Shandong University, Weihai 26429, China.
| | - Qiao Wang
- Marine College, Shandong University, Weihai 26429, China
| | - Li Wang
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China
| | - Jing Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Xin Wei
- Department of Chemistry & Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Vignesh Murugadoss
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China; Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| | - Tao Ding
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Suying Wei
- Department of Chemistry & Biochemistry, Lamar University, Beaumont, TX 77710, USA.
| |
Collapse
|