Fu H, Teng K, Shen Y, Zhao J, Qu H. Quantitative analysis of moisture content and particle size in a fluidized bed granulation process using near infrared spectroscopy and acoustic emission combined with data fusion strategies.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024;
305:123441. [PMID:
37748230 DOI:
10.1016/j.saa.2023.123441]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/02/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Monitoring granule property is essential for fluidization maintenance and product quality control in fluidized bed granulation (FBG). In this study, two non-invasive techniques, near-infrared (NIR) spectroscopy and acoustic emission (AE), were applied for quantitative analysis of moisture content (MC) and median particle size (D50) in a FBG process, combined with chemometrics and data fusion strategies. Partial least squares (PLS) and support vector machine (SVM) regression models were established based on NIR and AE spectral data. The optimal quantitative models were identified considering the effect of spectra preprocessing and variable selection. In the comparison study, the best separate models for MC and D50 quantification were based on NIR and AE, respectively. The NIR model exhibited the better prediction ability with the determination coefficient of validation set (R2v) of 0.9815, root mean square error of validation set (RMSEv) of 0.2226 %, and residual predictive deviation (RPD) of 7.4674 for MC. Meanwhile, the AE model presented the better prediction performance with R2v of 0.9710, RMSEv of 18.2643 μm, and RPD of 5.9740 for D50. Furthermore, among three data fusion strategies, the high-level fusion model achieved the best overall performance on D50 quantification with R2v of 0.9863, RMSEv of 12.5707 μm, and RPD of 8.6798. The results indicated that both NIR and AE are effective monitoring tools for MC and D50 analysis in fluidized bed granulation process. In addition, a more accurate and reliable analysis of particle size can be achieved by combining NIR and AE technology with high-level data fusion.
Collapse