1
|
Wang D, Liu X, Li M, Lv J, An X, Qian Q, Fu H, Zhang H, Yang X, Zou Q. Microstructure evolution and densification behavior of TiC/316L composite powders during cold/warm die compaction and solid-state sintering: 3D particulate scale numerical modelling and experimental validation. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
2
|
Wang S, Guo X, Shen Z, Lu H, Liu H. Experimental study on the alumina fine powder internal compression characteristics under gas pressurization. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Microstructure-based discrete simulations of the compaction of refractory powder composites. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Wang D, Li M, An X. Numerical study on the warm compaction and solid-state sintering of TiC/316L composite powders from particulate scale. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Cárdenas-Barrantes M, Cantor D, Barés J, Renouf M, Azéma E. Three-dimensional compaction of soft granular packings. SOFT MATTER 2022; 18:312-321. [PMID: 34878475 DOI: 10.1039/d1sm01241j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper analyzes the compaction behavior of assemblies composed of soft (elastic) spherical particles beyond the jammed state, using three-dimensional non-smooth contact dynamic simulations. The assemblies of particles are characterized using the evolution of the packing fraction, the coordination number, and the von Misses stress distribution within the particles as the confining stress increases. The packing fraction increases and tends toward a maximum value close to 1, and the mean coordination number increases as a square root of the packing fraction. As the confining stress increases, a transition is observed from a granular-like material with exponential tails of the shear stress distributions to a continuous-like material characterized by Gaussian-like distributions of the shear stresses. We develop an equation that describes the evolution of the packing fraction as a function of the applied pressure. This equation, based on the micromechanical expression of the granular stress tensor, the limit of the Hertz contact law for small deformation, and the power-law relation between the packing fraction and the coordination of the particles, provides good predictions from the jamming point up to very high densities without the need for tuning any parameters.
Collapse
Affiliation(s)
- Manuel Cárdenas-Barrantes
- LMGC, Université de Montpellier, CNRS, Montpellier, France.
- Laboratoire de Micromécanique et Intégrité des Structures (MIST), UM, CNRS, IRSN, France
| | - David Cantor
- Department of Civil, Geological and Mining Engineering, Polytechnique, 2500, Chemin de Polytechnique, Montréal, Québec, Canada.
| | - Jonathan Barés
- LMGC, Université de Montpellier, CNRS, Montpellier, France.
| | - Mathieu Renouf
- LMGC, Université de Montpellier, CNRS, Montpellier, France.
- Laboratoire de Micromécanique et Intégrité des Structures (MIST), UM, CNRS, IRSN, France
| | - Emilien Azéma
- LMGC, Université de Montpellier, CNRS, Montpellier, France.
- Laboratoire de Micromécanique et Intégrité des Structures (MIST), UM, CNRS, IRSN, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|