1
|
Zhou Y, Wang X, Wang N, Huang S, Zhu L. Efficient activation of peroxymonosulfate for catalytic degradation of organic pollutants by simultaneously using low-level cobalt ions and calcium carbonate micro-particles. J Environ Sci (China) 2025; 151:113-124. [PMID: 39481925 DOI: 10.1016/j.jes.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 11/03/2024]
Abstract
An efficient catalytic system was developed to remove various organic pollutants by simultaneously using low-level cobalt ions, calcium carbonate micro-particles and peroxymonosulfate (PMS). A simple base-induced precipitation was used to successfully loaded Co-centered reactive sites onto the surface of CaCO3 microparticles. Under optimal conditions at 25 °C, 10 mg/L methylene blue (MB) could be completely degraded within 10 min with 480 µg/L Co2+, 0.4 g/L CaCO3 microparticles (or 0.4 g/L Co@CaCO3) and 0.1 g/L PMS. The MB degradation followed the pseudo first order kinetics with a rate constant of 0.583 min-1, being 8.3, 11.5 and 53.0 times that by using Co-OH (0.07 min-1), Co2+ (0.044 min-1) and CaCO3 (0.011 min-1) as the catalyst, respectively. It was confirmed that there was a synergistic effect in the catalytic activity between Co species and the CaCO3 particles but the major contributor was the highly dispersed Co species. When Co2+-containing simulated electroplating wastewater was used as the Co2+ source, not only the added MB was also completely degraded within 5 min in this catalytic system, but also the coexisting heavy metal ions were substantially removed. The presently developed method was applied to simultaneously treat organic wastewater and heavy metals wastewater. The present method was also successfully used to efficiently degrade other organic pollutants including bisphenol A, sulfamethoxazole, rhodamine B, tetrabromobisphenol A, ofloxacin and benzoic acid. A catalytic mechanism was proposed for the PMS activation by Co@CaCO3. The surface of CaCO3 particles favors the adsorption of Co2+. More importantly, the surface of CaCO3 particles provides plentiful surface -OH and -CO32+, and these surface groups complex with Co2+ to produce more catalytically active species such as surface [CoOH]-, resulting in rapid Co2+/Co3+ cycling and electron transfer. These interactions cause the observed synergistic effect between Co species and CaCO3 particles in PMS activation. Due to good cycle stability, strong anti-interference ability and wide universality, the new method will have broad application prospects.
Collapse
Affiliation(s)
- Yu Zhou
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaobo Wang
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China; College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Nan Wang
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuangshuang Huang
- School of Physics and Technology, Center for Electron Microscopy, Wuhan University, Wuhan 430072, China
| | - Lihua Zhu
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Eltaweil AS, Bakr SS, Abd El-Monaem EM, El-Subruiti GM. Magnetic hierarchical flower-like Fe 3O 4@ZIF-67/CuNiMn-LDH catalyst with enhanced redox cycle for Fenton-like degradation of Congo red: optimization and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:75332-75348. [PMID: 37219772 PMCID: PMC10293427 DOI: 10.1007/s11356-023-27430-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
A novel flower-like CuNiMn-LDH was synthesized and modified, to obtain a promising Fenton-like catalyst, Fe3O4@ZIF-67/CuNiMn-LDH, with a remarkable degradation of Congo red (CR) utilizing H2O2 oxidant. The structural and morphological characteristics of Fe3O4@ZIF-67/CuNiMn-LDH were analyzed via FTIR, XRD, XPS, SEM-EDX, and SEM spectroscopy. In addition, the magnetic property and the surface's charge were defined via VSM and ZP analysis, respectively. Fenton-like experiments were implemented to investigate the aptness conditions for the Fenton-like degradation of CR; pH medium, catalyst dosage, H2O2 concentration, temperature, and the initial concentration of CR. The catalyst exhibited supreme degradation performance for CR to reach 90.9% within 30 min at pH 5 and 25 °C. Moreover, the Fe3O4@ZIF-67/CuNiMn-LDH/H2O2 system revealed considerable activity when tested for different dyes since the degradation efficiencies of CV, MG, MB, MR, MO, and CR were 65.86, 70.76, 72.56, 75.54, 85.99, and 90.9%, respectively. Furthermore, the kinetic study elucidated that the CR degradation by the Fe3O4@ZIF-67/CuNiMn-LDH/H2O2 system obeyed pseudo-first-order kinetic model. More importantly, the concrete results deduced the synergistic effect between the catalyst components, producing a continuous redox cycle consisting of five active metal species. Eventually, the quenching test and the mechanism study proposed the predominance of the radical mechanism pathway on the Fenton-like degradation of CR by the Fe3O4@ZIF-67/CuNiMn-LDH/H2O2 system.
Collapse
Affiliation(s)
| | - Sara S Bakr
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Li J, Yan C, Sun D, Ma H, Wang G, Ma C, Hao J. Peroxymonosulfate activation by magnetic CoNi-MOF catalyst for degradation of organic dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27369-4. [PMID: 37148514 DOI: 10.1007/s11356-023-27369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
In this work, Fe3O4/CoNi-MOF was synthesized by a simple solvothermal method. The catalytic performance of 0.2-Fe3O4/CoNi-MOF toward PMS activation was studied by degradation of 20 mg/L methylene blue (MB). The results indicated that 0.2-Fe3O4/CoNi-MOF had good catalytic ability, the removal rate of MB was 99.4% within 60 min with 125 mg/L PMS and 150 mg/L catalyst. Quenching experiment and electron paramagnetic resonance (EPR) analysis revealed that the singlet oxygen (1O2), superoxide radical (•O2-) and sulfate radical (SO4•-) played a crucial role in the catalytic degradation process. Meantime, mechanism of PMS activation by 0.2-Fe3O4/CoNi-MOF was proposed, the electrons donated by Fe2+ can also enhance the Co-Ni cycles. In conclusion, Fe3O4/CoNi-MOF composite catalyst has the advantages of simple preparation, excellent catalytic activity and reusability, which is an effective catalyst for water pollution control.
Collapse
Affiliation(s)
- Jiayi Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China
| | - Chumin Yan
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China
| | - Dedong Sun
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China.
| | - Hongchao Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China
| | - Guowen Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China
| | - Chun Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China
| | - Jun Hao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China
| |
Collapse
|
4
|
Dang G, Jia Y, Guo L, Yang Y, Zhi J, Li X. Tannin-functionalized Mn3O4 as support for FeNiB alloy to construct sono-Fenton-like reaction for the degradation of antibiotic pollutants in water. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Carrasco-Marín F. From Fenton and ORR 2e−-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process. Catalysts 2023. [DOI: 10.3390/catal13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Currently, the presence of emerging contaminants in water sources has raised concerns worldwide due to low rates of mineralization, and in some cases, zero levels of degradation through conventional treatment methods. For these reasons, researchers in the field are focused on the use of advanced oxidation processes (AOPs) as a powerful tool for the degradation of persistent pollutants. These AOPs are based mainly on the in-situ production of hydroxyl radicals (OH•) generated from an oxidizing agent (H2O2 or O2) in the presence of a catalyst. Among the most studied AOPs, the Fenton reaction stands out due to its operational simplicity and good levels of degradation for a wide range of emerging contaminants. However, it has some limitations such as the storage and handling of H2O2. Therefore, the use of the electro-Fenton (EF) process has been proposed in which H2O2 is generated in situ by the action of the oxygen reduction reaction (ORR). However, it is important to mention that the ORR is given by two routes, by two or four electrons, which results in the products of H2O2 and H2O, respectively. For this reason, current efforts seek to increase the selectivity of ORR catalysts toward the 2e− route and thus improve the performance of the EF process. This work reviews catalysts for the Fenton reaction, ORR 2e− catalysts, and presents a short review of some proposed catalysts with bifunctional activity for ORR 2e− and Fenton processes. Finally, the most important factors for electro-Fenton dual catalysts to obtain high catalytic activity in both Fenton and ORR 2e− processes are summarized.
Collapse
|
6
|
Zhang W, Li M, Shang W, Wang M, Zhang J, Sun F, Li M, Li X. Singlet oxygen dominated core-shell Co nanoparticle to synergistically degrade methylene blue through efficient activation of peroxymonosulfate. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
CeO2/ZIF-9 composites as a heterogeneous catalyst for peroxymonosulfate activation to degrade methylene blue. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Chen H, Long Q, Wei F, Wei Z, Liu M. Enhanced Fenton removal of phenol catalyzed by a modified red mud derived from the reduction of oxalic acid and L-ascorbic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63216-63226. [PMID: 35451718 DOI: 10.1007/s11356-022-20279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Red mud, a bauxite residue generated during alumina production through the Bayer process, contains oxides of Fe, Ti, Al, Mn, and rare earths, and has a latent performance for catalytic removal of phenol. We proposed a novel and facile approach for red mud modification by the reduction of oxalic acid and L-ascorbic acid in the acidic solution. By surveying characteristics of modified red mud and influencing factors of phenol removal, the optimum experiment conditions and the possible mechanism were explored, respectively. The results demonstrated that RO2V2 (treated red mud using 2 g of oxalic acid dehydrate and 2 g of L-ascorbic acid) and RO3V3 (treated red mud using 3 g of oxalic acid dehydrate and 3 g of L-ascorbic acid) showed the most efficient catalytic capacity for the phenol removal and removal efficiency of over 99.1% for the 200 mg/L of phenol solution within 5 min among investigated catalysts with the pH decreasing from 6.7 to 3. The excellent catalytic performance of modified red mud profited from the production of Fe3O4, Fe2O3, Mn2O3, Fe2SiO4, and FeTiO3 in the catalysts. It was motivating for removal of phenol to increase the dosage of catalyst and H2O2. The rate constants of the pseudo-first-order kinetics model of RO2V2 and RO3V3 were 1.0 and 1.073, respectively. The results of continuous experiments provided a positive reference for a future pilot scale test.
Collapse
Affiliation(s)
- Hongliang Chen
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou, 561000, People's Republic of China.
- Chemical Process Centre for Comprehensive Treatment of Industrial Solid Waste, Anshun University, Anshun, Guizhou, 561000, People's Republic of China.
| | - Qian Long
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou, 561000, People's Republic of China
| | - Fuhua Wei
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou, 561000, People's Republic of China
- Chemical Process Centre for Comprehensive Treatment of Industrial Solid Waste, Anshun University, Anshun, Guizhou, 561000, People's Republic of China
| | - Zhun Wei
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou, 561000, People's Republic of China
| | - Meili Liu
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou, 561000, People's Republic of China
| |
Collapse
|
9
|
Zhao W, Zhu X, Zeng Z, Lei J, Huang Z, Xu Q, Liu X, Yang Y. Cu-Co nanoparticles supported on nitrogen-doped carbon: An efficient catalyst for hydrogenation of 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Guo H, Chen L, Zhang X, Chen H, Shao Y. Silicalite-1 Zeolite Encapsulated Fe Nanocatalyst for Fenton-like Degradation of Methylene Blue. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Liu Y, Liu Y, Ji C, Zhang Y, Wang Y, Qu R, Niu Y. Fabrication of attapulgite/C3N4 hybridized metal organic framework nanocomposites by different strategies and study on adsorption properties for alizarin yellow GG. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Shetgaonkar SS, Salkar AV, Morajkar PP. Advances in Electrochemical and Catalytic Performance of Nanostructured FeCo 2 O 4 and Its Composites. Chem Asian J 2021; 16:2871-2895. [PMID: 34375014 DOI: 10.1002/asia.202100654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/08/2021] [Indexed: 11/06/2022]
Abstract
It is well established that the excessive and uncontrolled use of fossil fuels and organic chemicals have put a risk to the earth's environment and the life that sustains within it. Carbon-free, sustainable, alternative energy technologies have therefore become the prime focus of current research. Smart inorganic materials have emerged as the potential solution to suffice energy needs and remediate the organic pollutants discharged to the environment. One such promising, versatile material is FeCo2 O4 which has gained immense research interest in the present decade due to its high efficiency and performance in energy and environmental applications. Innovative material design strategies involving the interplay of nanostructured morphology, chemical composition, redox surface states, and defect engineering have significantly enhanced both electrochemical and catalytic properties of FeCo2 O4 . Therefore, this review article aims to provide the first-ever comprehensive account of the latest research and developments in design-synthesis strategies, characterization techniques, and applications of nanostructured FeCo2 O4 and its composites in various electrochemical as well as catalytic applications. A detailed account of the nanostructured FeCo2 O4 and its composites in various energy storage and conversion devices such as supercapacitors (SCs), batteries, and fuel cells has been presented. Furthermore, a special section has been devoted to highlight the role of FeCo2 O4 in enhancing the sluggish reaction kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in water splitting application. This review also highlights the role of nanostructured FeCo2 O4 in photocatalytic waste water treatment, gas sensing, and dual-phase membrane technologies wherein FeCo2 O4 has demonstrated promising performance.
Collapse
Affiliation(s)
| | - Akshay V Salkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, India
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, India
| |
Collapse
|