1
|
Wang S, Zheng Y, Jiang B, Yu CF, Zhang Y, Tao W, Ji B. Effect of Sophorolipid Adsorption on the Coal Microstructure: Experimental and Wettability Mathematical Model Discussion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14173-14188. [PMID: 37734066 DOI: 10.1021/acs.langmuir.3c02308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Green biosurfactants are emerging as a promising area of research. However, there is a limited focus on the adsorption and wetting characteristics of biosurfactants on coal dust. This study explores the effects of sophorolipid (SL) biosurfactants on the microstructure and wettability of different coalification degree coal. The microstructure parameters of SL adsorbed on coal dust were measured using a surface tensiometer, contact angle analyzer, and particle size analyzer. The results indicate that SL has the lowest critical surface tension, leading to a 9.25° decrease in the contact angle for low-rank bituminous coal (YZ-LRBC). Furthermore, SL significantly altered the particle size distribution of lignite (NM-LC) and YZ-LRBC. The pore size structure of SL-infiltrated coal dust was quantified using a specific surface area analyzer, revealing a decrease in the specific surface area and an increase in the average pore size. The infrared analysis demonstrated that SL permeation significantly increased the percentage of hydrophilic functional groups (hydroxyl structures) while reducing the hydrophobic functional groups (aliphatic hydrocarbon and aromatic structure). Based on the measured microstructure parameters, a regression equation for contact angle was established: [contact angle (°)] = 73.800 - 0.860 × [D10 (nm)] + 4.280 × [specific surface area (m2/g)]. Notably, the characteristic particle size D10 had a significant negative effect on the contact angle, while the specific surface area had a significant positive effect. These findings provide a theoretical foundation for the application of biosurfactants in water injection to reduce dust and improve the wetting efficiency.
Collapse
Affiliation(s)
- Shiju Wang
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yuannan Zheng
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Bingyou Jiang
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Chang-Fei Yu
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yi Zhang
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Wenhan Tao
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Ben Ji
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| |
Collapse
|
2
|
Li J, Yan G, Kong S, Bai X, Li G, Zhang J. Molecular Mechanism Study on the Effect of Microstructural Differences of Octylphenol Polyoxyethylene Ether (OPEO) Surfactants on the Wettability of Anthracite. Molecules 2023; 28:4748. [PMID: 37375302 DOI: 10.3390/molecules28124748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Inhalable coal dust poses a serious threat to coal mining safety, air quality, and the health of miners. Therefore, the development of efficient dust suppressants is crucial for addressing this issue. This study evaluated the ability of three high-surface-active OPEO-type nonionic surfactants (OP4, OP9, and OP13) to improve the wetting properties of anthracite via extensive experiments and a molecular simulation and determined the micro-mechanism of different wetting properties. The surface tension results show that OP4 has the lowest surface tension (27.182 mN/m). Contact angle tests and wetting kinetics models suggest that OP4 exhibits the strongest wetting improvement ability on raw coal with the smallest contact angle (20.1°) and the fastest wetting rate. In addition, FTIR and XPS experimental results also reveal that OP4-treated coal surfaces introduce the most hydrophilic elements and groups. UV spectroscopy testing shows that OP4 has the highest adsorption capacity on the coal surface, reaching 133.45 mg/g. The surfactant is adsorbed on the surface and pores of anthracite, while the strong adsorption ability of OP4 results in the least amount of N2 adsorption (8.408 cm3/g) but the largest specific surface area (1.673 m2/g). In addition, the filling behavior and aggregation behavior of surfactants on the anthracite coal surface were observed using SEM. The MD simulation results indicate that OPEO reagents with overly long hydrophilic chains would produce spatial effects on the coal surface. Under the influence of the π-π interaction between the hydrophobic benzene ring and the coal surface, OPEO reagents with fewer ethylene oxide quantities are more prone to adsorb onto the coal surface. Therefore, after the adsorption of OP4, both the polarity and the water molecule adhesion ability of the coal surface are greatly enhanced, which helps to suppress dust production. These results provide important references and a foundation for future designs of efficient compound dust suppressant systems.
Collapse
Affiliation(s)
- Jiajun Li
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Guochao Yan
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shaoqi Kong
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuyang Bai
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Gang Li
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiawei Zhang
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
3
|
Han F, Zhao Y, Liu M, Hu F, Peng Y, Ma L. Wetting behavior during impacting bituminous coal surface for dust suppression droplets of fatty alcohol polyoxyethylene ether. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51816-51829. [PMID: 36813941 DOI: 10.1007/s11356-023-25991-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The wetting behavior of droplets during impacting coal surface widely exists in the dust control process. Understanding the effect of surfactants on the diffusion of water droplets on coal surface is critical. To study the effect of fatty alcohol polyoxyethylene ether (AEO) on the dynamic wetting behavior of droplets on bituminous coal surface, a high-speed camera is used to record the impact process of ultrapure water droplets and three different molecular weight AEO solution droplets. A dynamic evaluation index, dimensionless spreading coefficient ([Formula: see text]), is used to evaluate the dynamic wetting process. The research results show that maximum dimensionless spreading coefficient ([Formula: see text]) of AEO-3, AEO-6, and AEO-9 droplets is greater than that of ultrapure water droplets. With the increase of impact velocity, the [Formula: see text] increases, but the required time decreases. Moderately increasing the impact velocity is conducive to promoting the spreading of droplets on the coal surface. Below the critical micelle concentration (CMC), the concentration of AEO droplets is positively correlated with the [Formula: see text] and the required time. When the polymerization degree increases, the Reynolds number ([Formula: see text]) and Weber number ([Formula: see text]) of droplets decrease, and the [Formula: see text] decreases. AEO can effectively enhance the spreading of droplets on the coal surface, but the increase in polymerization degree can inhibit this process. Viscous force hinders droplet spreading during droplet interaction with the coal surface, and surface tension promotes droplet retraction. Under the experimental conditions of this paper ([Formula: see text], [Formula: see text]), there is a power exponential relationship between [Formula: see text] and [Formula: see text].
Collapse
Affiliation(s)
- Fangwei Han
- College of Safety Science and Engineering, Liaoning Technical University, Liaoning Province, Huludao, 125105, China.
- Key Laboratory of Mine Thermodynamic Disasters and Control, Ministry of Education, Liaoning Technical University, Liaoning Province, Huludao, 125105, China.
| | - Yue Zhao
- College of Safety Science and Engineering, Liaoning Technical University, Liaoning Province, Huludao, 125105, China
| | - Mei Liu
- College of Safety Science and Engineering, Liaoning Technical University, Liaoning Province, Huludao, 125105, China
| | - Fuhong Hu
- College of Safety Science and Engineering, Liaoning Technical University, Liaoning Province, Huludao, 125105, China
| | - Yingying Peng
- College of Safety Science and Engineering, Liaoning Technical University, Liaoning Province, Huludao, 125105, China
| | - Liang Ma
- College of Safety Science and Engineering, Liaoning Technical University, Liaoning Province, Huludao, 125105, China
| |
Collapse
|
4
|
Zhang F, Lu Y, Wang Y, Jiang Z, Zhang Q. Study on synthesis of environmentally-friendly polymer dust suppressant based on graft modification. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
5
|
Zhang X, Yu Y, Cheng W, Yang X, Cui W, Wang C. Research on performance of composite dust suppressant for mining based on modified soybean protein isolate. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2022.118166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Enhancement of the wettability of a coal seam during water injection: effect and mechanism of surfactant concentrations above the CMC. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39857-39870. [PMID: 36600158 DOI: 10.1007/s11356-022-25036-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
This paper determines the optimal surfactant concentration for enhancing coal's wettability and explores the wetting mechanism at surfactant concentrations above the critical micelle concentration (CMC) during coal seam water injection. In this study, laboratory experiments and field tests were used to investigate the influence of monomeric surfactants and compound surfactants at various concentrations on coal's wettability. The results showed that when the surfactant solution concentration was greater than the CMC, the coal's wettability was significantly enhanced as the surfactant concentration increased. However, the coal's wettability did not monotonically increase with the concentration, and the maximum value was reached in the range of 0.5-3 wt.%. Increasing the surfactant adsorption density and changing the adsorption state on the coal surface were the essential reasons surfactants continued improving the coal's wettability at concentrations above the CMC. The Marangoni flow effect and changes in the viscosity of the surfactant solution with concentration were also important factors that affected the coal's wettability.
Collapse
|
7
|
Wang X, Li X, Yang J. Effect of different types of surfactants adsorption characteristics on the wettability of coking coal dust. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
8
|
Chen X, Zuo P, Zhang G, Min R, Zhao S. Study of the Micromechanism of the Effect of Fatty Alcohol Poly(oxyethylene) Ether-9 on the Wettability of Jincheng Anthracite. ACS OMEGA 2022; 7:42582-42592. [PMID: 36440167 PMCID: PMC9686186 DOI: 10.1021/acsomega.2c06084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 06/01/2023]
Abstract
The influence mechanism of the adsorption of fatty alcohol poly(oxyethylene) ether (AEO9) on the wettability of anthracite coal was studied by means of experiments and simulations. First, the contact angle and surface tension were measured. When the AEO9 concentration was 0.5 wt %, the contact angle and surface tension were the smallest, which were 10.28° and 25.39 mN m-1, respectively. X-ray photoelectron spectroscopy (XPS) indicated that the content of C-O functional groups on the anthracite surface increased by 20.76% after adsorption of AEO9. The molecular orbital energy and electrostatic potential of AEO9 and anthracite were calculated by density functional theory (DFT). There are two modes of electron transfer between the two orbitals: highest occupied molecular orbital (HOMO) transfer of AEO9 to lowest unoccupied molecular orbital (LUMO) transfer of anthracite and HOMO transfer of anthracite to LUMO transfer of AEO9. The dynamics simulation results show that the addition of AEO9 increases the migration rate of water molecules, promotes the movement of a large number of water molecules toward the surface of anthracite, and enhances the thickness of the water molecular layer on the surface of anthracite. The analysis of the relative concentration shows that AEO9 is distributed at the anthracite/water interface. AEO9 molecules are intertwined and connected by hydrophobic chains to form a network structure, which covers the anthracite surface horizontally, thus promoting the strength of the anthracite/water interaction.
Collapse
Affiliation(s)
- Xiangjun Chen
- State
Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan
Polytechnic University), Jiaozuo454003, China
- State
Collaborative Innovation Center of Coal Work Safety and Clean-efficiency
Utilization (Henan Polytechnic University), Jiaozuo454003, China
- College
of Safety Science and Engineering (Henan Polytechnic University), Jiaozuo454003, China
| | - Peiqi Zuo
- State
Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan
Polytechnic University), Jiaozuo454003, China
| | - Guixin Zhang
- State
Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan
Polytechnic University), Jiaozuo454003, China
| | - Rui Min
- State
Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan
Polytechnic University), Jiaozuo454003, China
| | - San Zhao
- State
Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan
Polytechnic University), Jiaozuo454003, China
| |
Collapse
|
9
|
Zhu K, Chen L, Chen C, Xie J. Preparation and characterization of polyethylene antifogging film and its application in lettuce packaging. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Meng J, Wang J, Chen H, Zhou Z, Wang C. Study on the wetting mechanism of SDBS with coals of different ranks based on surface free energy theory. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Study on the adsorption and dust suppression mechanism of urease-producing bacteria on coal dust. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Comparison of Paliperidone Palmitate from Different Crystallization Processes and Effect on Formulations In Vitro and In Vivo. Pharmaceutics 2022; 14:pharmaceutics14051094. [PMID: 35631680 PMCID: PMC9144547 DOI: 10.3390/pharmaceutics14051094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
The quality of active pharmaceutical ingredients (APIs) is an important factor which can affect the safety and efficacy of pharmaceuticals. This study was designed to investigate the nature of paliperidone palmitate (PP) obtained by different crystallization processes, then compare the characteristics between test formulations which prepared PP of different crystallization and reference formulations (Invega Sustenna®) in vitro and in vivo. Two different PPs, namely PP-1 and PP-2, were prepared by different crystallization methods. Contact angle, morphology, and crystallinity of the PPs were characterized. Taking the particle sizes and distribution of Invega Sustenna® as reference, test formulations were prepared by the wet milling method using either a PP-1 or PP-2 sample. Their release behavior, stability in vitro, and pharmacokinetics in vivo were subsequently investigated. The results indicated that PP-2 had a higher surface free energy (SFE). More small particles were attached to the PP-1 surface under the influence of crystallization temperature. Different crystallization processes did not change the crystal of PP, but changed the crystallinity of PP. There was no obvious difference in in vitro releases between test formulations. However, the stability and state of formulation containing PP-2 were better compared to formulations containing PP-1, indicated by differences in crystallinity and SFE. Meanwhile, pharmacokinetic in vivo results demonstrated that the pharmacokinetic profiles and parameters of formulation containing PP-2 and Invega Sustenna® tended to be consistent, but those of formulations containing PP-1 were significantly different from those of formulations containing PP-2 or Invega Sustenna®, and there was burst release phenomenon of formulations containing PP-1 in rats. PP made by different crystallization processes could induce changes in appearance, SFE, and crystallinity, and further affect the stability, state, and pharmacokinetic in vivo formulation.
Collapse
|
13
|
Awan FUR, Arif M, Iglauer S, Keshavarz A. Coal fines migration: A holistic review of influencing factors. Adv Colloid Interface Sci 2022; 301:102595. [PMID: 35033921 DOI: 10.1016/j.cis.2021.102595] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/06/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022]
Abstract
Coal fines can substantially influence coal seam gas reservoir permeability, thus impeding the flow of gas in coal microstructure. The coal fines generation and migration are influenced by several factors, wherein coal fines are generally hydrophobic and aggregate in natural coal seam gas (CSG) under prevailing conditions of pH, salinity, temperature and pressure. This aggregation behaviour can damage the coal matrix and cleat system permeabilities, leading to a considerable reduction of proppant pack conductivity (i.e. fracture conductivity). Several datasets have been reported within the literature on this subject in the last decade. However, a more up-to-date discussion of this area is key to understanding coal fines migration and associated knowledge. Thus, in this review, we conduct a systematic investigation of coal fines and their influencing factors. Here, coal fines are introduced, followed by an initial holistic investigation of their generation, plugging, movement, redistribution and production. Then, in order to enhance current understandings of the subject matter, a parametric evaluation of the factors noted earlier is conducted, based on recently published literature. Subsequently, the published mathematical and analytical models for fines generation are reviewed. Finally, the implications and challenges associated with coal fines mitigation are discussed.
Collapse
|
14
|
Zhao B, Li S, Lin H, Cheng Y, Kong X, Ding Y. Experimental study on the influence of surfactants in compound solution on the wetting-agglomeration properties of bituminous coal dust. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
15
|
Shi G, Qi J, Teng G, Wang Y, Shen H. Influence of coal properties on dust suppression effect of biological dust suppressant. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
16
|
|