1
|
Qin X, Wei X, Shi J, Yan Y, Zhang Y. Research on the Inhibition Effect of NaCl on the Explosion of Mg-Al Alloy Powder. ACS OMEGA 2024; 9:8048-8054. [PMID: 38405477 PMCID: PMC10882612 DOI: 10.1021/acsomega.3c08242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
A study was conducted on the explosion overpressure and flame propagation law of magnesium-aluminum (Mg-Al) alloy powder, and the suppression mechanism of sodium chloride (NaCl) on the explosion of magnesium-aluminum alloy powder was explored. Adding NaCl powder can effectively reduce the explosion pressure, flame front position, and flame propagation speed. The higher the amount of NaCl powder added, the lower the explosion pressure of magnesium-aluminum alloy powder, the slower the flame propagation speed, and the lower the flame brightness. NaCl adsorbed on Mg-Al alloy powder isolated heat transfer and played a cooling role. The Cl- produced by NaCl decomposition will react with the free radicals H+ and OH- in the reaction system, which will reduce the concentration of H+ and OH- in the combustion process and hinder the propagation and expansion of the flame. The research results provide theoretical guidance for the explosion prevention of Mg-Al alloy powder and the preparation of a physical-chemical compound explosion suppressor in the later stage.
Collapse
Affiliation(s)
- Xinxin Qin
- College of Safety and Environmental
Engineering, Shandong University of Science
and Technology, Qingdao 266590, Shandong, China
| | - Xiangrui Wei
- College of Safety and Environmental
Engineering, Shandong University of Science
and Technology, Qingdao 266590, Shandong, China
| | - Jing Shi
- College of Safety and Environmental
Engineering, Shandong University of Science
and Technology, Qingdao 266590, Shandong, China
| | - Yanling Yan
- College of Safety and Environmental
Engineering, Shandong University of Science
and Technology, Qingdao 266590, Shandong, China
| | - Yansong Zhang
- College of Safety and Environmental
Engineering, Shandong University of Science
and Technology, Qingdao 266590, Shandong, China
| |
Collapse
|
2
|
Guo R, Li N, Zhang X, Zhang Y, Chen Q, Zhao W, Wang X, Li R. Suppression mechanism of micron/nano PMMA dust flame based on thermal analysis. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Synthesis of Cyclic Carbonate from Carbon Dioxide and Epoxides Using Bicobalt Complexes Absorbed on DFNS. Catal Letters 2022. [DOI: 10.1007/s10562-022-04130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Study on the preparation of green suppressors and their characteristics in coal dust flame propagation inhibition. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Zhang Y, Yang J, Li L, Li R, Chen J, Li N, Zhang X. Study on the preparation of novel FR-245/MCM-41 suppressant and its inhibition mechanism on oil shale deflagration flame. J Loss Prev Process Ind 2022. [DOI: 10.1016/j.jlp.2022.104946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Meng X, Yan K, Pan Z, Zhang Y, Liu J, Shi L, Wu Y. Study on mechanism and dynamics of inert powder explosion inhibitor inhibiting aluminum powder explosion. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Muzammil K, Solanki R, Alkaim AF, Romero Parra RM, Lafta HA, Jalil AT, Gupta R, Hammid AT, Mustafa YF. A novel approach based on the ultrasonic-assisted microwave method for the efficient synthesis of Sc-MOF@SiO2 core/shell nanostructures for H2S gas adsorption: A controllable systematic study for a green future. Front Chem 2022; 10:956104. [PMID: 36300018 PMCID: PMC9590105 DOI: 10.3389/fchem.2022.956104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, for the first time, novel Sc-MOF@SiO2 core/shell nanostructures have been synthesized under the optimal conditions of ultrasonic-assisted microwave routes. The final products showed small particle size distributions with homogeneous morphology (SEM results), high thermal stability (TG curve), high surface area (BET adsorption/desorption techniques), and significant porosity (BJH method). The final nanostructures of Sc-MOF@SiO2 core/shell with such distinct properties were used as a new compound for H2S adsorption. It was used with the systematic investigation based on a 2K−1 factorial design, which showed high-performance adsorption of about 5 mmol/g for these novel adsorbents; the optimal experimental conditions included pressure, 1.5 bar; contact time, 20 min; and temperature, 20°C. This study and its results promise a green future for the potential control of gas pollutants.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi
| | - Reena Solanki
- Department of Chemistry, Dr. A. P. J. Abdul Kalam University, Indore, Madhya Pradesh, India
- *Correspondence: Reena Solanki, ; Ayad F. Alkaim,
| | - Ayad F. Alkaim
- Chemistry Department College of Science for Women University of Babylon, Hillah, Iraq
- *Correspondence: Reena Solanki, ; Ayad F. Alkaim,
| | | | - Holya A. Lafta
- Department of Pharmacy, Al Nisour University College, Baghdad, Iraq
| | | | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al Sadiq University, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
8
|
Sustainable oxidation of olefins and sulfides employing nanopolyoxomolybdate supported by ionic liquid on dendritic fibrous nanosilica. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
The Analysis of Environmental Cost Control of Manufacturing Enterprises Using Deep Learning Optimization Algorithm and Internet of Things. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1721157. [PMID: 36210986 PMCID: PMC9546652 DOI: 10.1155/2022/1721157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Under the background of the Internet of things (IoT), the problems between the actual production and the environment are also prominent. The environmental cost control in the production process of manufacturing enterprises are discussed to reduce the environmental cost and promote the improvement of production efficiency. First, the environmental cost under the background of IoT is analyzed. Also, the environmental cost control methods in the production process of traditional manufacturing enterprises are investigated. Second, based on the principle of traditional genetic algorithm, the fast-nondominated sorting genetic algorithm (NSGA-II) of multiobjective genetic algorithm is introduced to complete the optimization of BP neural network (BPNN) algorithm in deep learning (DL), and the multiobjective GA optimization BPNN model is established. Finally, the multiobjective GA algorithm is used to empirically analyze the environmental cost control capability of a paper-making enterprise. It is compared with enterprises with excellent and poor environmental cost control capabilities in the same industry to find out secondary indexes. The results show that environmental costs have long-term and economic characteristics. The global search ability of BPNN optimized by multiobjective GA is improved, and the local optimal dilemma is avoided. Through empirical analysis, it is found that the comprehensive capability of the environmental cost control of the enterprise is better, scored 79 or more, and the indexes of insufficient development and advantages are obtained. As IoT rapidly develops, it is necessary to further improve the ability of enterprises in environmental cost management, which is very important to promote the development of enterprises and enhance their core competitiveness. It is hoped that this investigation can provide certain reference significance for improving the environmental cost management capability of enterprises, increasing production efficiency, and reducing environmental costs.
Collapse
|
10
|
Design and Development of Explosion-Proof Cavity of Hydraulic System Power Unit Applied in Explosion-Proof Area. Processes (Basel) 2022. [DOI: 10.3390/pr10091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The construction machinery and vehicles, especially the explosion-proof and explosion-isolation ability of the vehicles are playing an increasingly important role in the complex and unpredictable emergency rescue field. In this paper, the explosion-proof housing of hydraulic system power unit applied in engineering machinery is investigated, wherein the power unit includes motor, power supply and control element. Motor-driven hydraulic pump provides the necessary power for the hydraulic system. The gas explosion process, basic parameters, flame acceleration mechanism and the theory model of gas explosion in finite space are analyzed. Relevant mathematical models of the experimental gas explosion for explosion-proof cavity are established. Furthermore, the models are analyzed by numerical method. We simulate the dynamic process of explosion by software. The analysis, examination and simulation of structural strength are conducted on the explosion-proof cavity according to the maximum explosion pressure obtained from the simulation results. The reasonable design parameters satisfying the explosion-proof requirements are obtained. The explosion-proof cavity which is processed according to the design parameters is tested. The explosion-proof performance is verified by analyzing the experimental results. According to the test standard, the impact test, thermal test, pressure test, overpressure test and propagation test under internal ignition for the cavity are conducted. The results show that the pressure test coincides with the simulation results. The remaining test results also satisfy the experimental purpose. The reasonableness of the design of the explosion-proof cavity is verified, which can meet the actual requirements of the equipment.
Collapse
|
11
|
Almarashi A, Hussin AM, Mirparizi M, Zhang C, Saad HA. Influence of nanoparticles on freezing inside container equipped with fins. Sci Rep 2022; 12:14792. [PMID: 36042360 PMCID: PMC9427983 DOI: 10.1038/s41598-022-18714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
With loading of different shapes of nanoparticles, the solidification speed can be changed which was scrutinized in current work. Although the nanoparticles dispersion can decline the heat capacity, the conduction mode can be improved with such technique and changing the styles of nano-powders can alter the strength of conduction. The velocity terms were neglected in freezing, thus, the main equations include two equations with unsteady form for scalars of solid fraction and temperature. Grid adaption with position of ice front has been considered in simulations utilizing FEM. The upper sinusoidal and inner rectangular walls maintain cold temperature and freezing starts from these regions. Adding nanomaterial can expedite the process around 15.75% (for m = 4.8) and 29.8% (for m = 8.6). Also, utilizing particles with shapes of blade form can augment the freezing rate around 16.69%. The efficacy of m on freezing process rises around 4% with elevate of concentration of nanoparticles.
Collapse
Affiliation(s)
- Adel Almarashi
- Department of Mathematics, College of Science, Jazan University, New Campus, Post Box 2097, Jazan, Kingdom of Saudi Arabia
| | - Amira M Hussin
- Department of Mathematics, Al-Aflaj College of Science and Humanities Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj, 710-11912, Kingdom of Saudi Arabia.
| | - M Mirparizi
- Department of Mechanical Engineering, University of Yazd, Yazd, Iran. .,Multidisciplinary Center for Infrastructure Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Chunwei Zhang
- Multidisciplinary Center for Infrastructure Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Hosam A Saad
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Screening and Testing of Anti-Slagging Agents for Tobacco-Stalk-Based Biomass Pellet Fuel for Tobacco Curing. Processes (Basel) 2022. [DOI: 10.3390/pr10091690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Using tobacco stalks as a biomass fuel for flue-cured tobacco production creates a closed, green production cycle. Tobacco stalks are rich in cellulose and can be crushed to produce biomass pellet fuel (BPF). However, single flue-cured tobacco stalk (FCTs) BPF can easily slag during flue-cured tobacco heating (FTH), which affects the operation of biomass burners. In this study, five anti-slagging agents (ASAs), one organic (sodium carboxymethyl cellulose, CMC) and four inorganic (kaolin, KLN; diatomite earth, DTE; calcium carbonate, CCO; and calcium dihydrogen phosphate, CHO)], were compared. An ash fusibility test was conducted in two steps to optimize the proportion and treatments that were then screened using FTH. Compared with pure FCT-based BPFs, the slag resistance of 2% CCO and CHO could be controlled below 15%. The emission of particulate matter from chimneys burning BPF with 2% CCO was lower than that with other ASAs. The ASAs achieved complete combustion with low carbon monoxide content in the tail gas. Considering the anti-slagging effect and economic cost, 2% CCO was the best additive for the biomass burner. These results provide a reference for FCT-based BPF production.
Collapse
|
13
|
Wong JHM, Tan RPT, Chang JJ, Ow V, Yew PYM, Chee PL, Kai D, Loh XJ, Xue K. Dynamic grafting of carboxylates onto poly(vinyl alcohol) polymers for supramolecularly-crosslinked hydrogel formation. Chem Asian J 2022; 17:e202200628. [PMID: 35977910 DOI: 10.1002/asia.202200628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/15/2022] [Indexed: 11/05/2022]
Abstract
Supramolecular hydrogels have attracted considerable interest due to their unique stimuli-responsive and self-healing properties. However, these hydrogel systems are usually achieved by covalent grafting of supramolecular units onto the polymer backbone, which in turn limits their reprocessability. Herein, we prepared a supramolecular hydrogel system by forming dynamic covalent crosslinks between 4-carboxyphenylboronic acid (CPBA) and polyvinyl alcohol (PVA). The system was then further crosslinked with either calcium ions or branched polyethylenimine (PEI) to generate hydrogels with distinctly different properties. Incorporation of calcium ions resulted in the formation of hydrogels with higher storage modulus of 7290 Pa but without self-healing properties. On the other hand, PEI-crosslinked hydrogel (PVA-CPBA-PEI) exhibited >2000% critical strain value, demonstrated high stability over 52 days and showed sustained antibacterial effect. A combination of supramolecular interactions and dynamic covalent crosslinks can be an alternate strategy to fabricate next generation hydrogel materials.
Collapse
Affiliation(s)
- Joey Hui Min Wong
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | | - Jun Jie Chang
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | - Valerie Ow
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | | - Pei Lin Chee
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | - Dan Kai
- Institute of Materials Research and Engineering, Strategic Research Initiative, SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | |
Collapse
|
14
|
Activated Carbon Modified by Ester Hydrolysis of Ethyl Acetate for Water Vapor Adsorption Enhancement. Processes (Basel) 2022. [DOI: 10.3390/pr10081527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To improve water vapor adsorption, this study employed oxalic acid–ethyl acetate acidic hydrolysis to modify honeycomb activated carbon and introduce hydrophilic functional groups. Scanning electron microscopy (SEM), Boehm titration, Fourier transform infrared spectroscopy (FT-IR), and an automatic surface area analyzer (BET) were used to characterize the microscopic morphology, surface functional groups, specific surface area, and pore size changes. The results showed that, when the concentration of oxalic acid is 0.0006 mol/cm3, the specific surface area is 179.06 m2/g. After hydrolysis with ethyl acetate, the original functional groups became more abundant, while the number of total acidic functional groups on the surface grew from 0.497 mmol/g to 1.437 mmol/g. The static water vapor adsorption experiments were conducted on modified activated carbon under constant temperature and humidity conditions. Compared with unmodified activated carbon, the activated carbon modified with 0.0006 mol/cm3 oxalic acid increased the adsorption capacity of water vapor by 15.7%. The adsorption capacity of activated carbon after being combined with 0.0006 mol/cm3 oxalic acid and ester hydrolysis modification increased by 37.1%. At the same temperature, the adsorption capacity increased with a higher relative humidity. At the same relative humidity, the adsorption capacity decreased as the temperature rose. Therefore, this modification method may provide clues for the application of enhancing the hygroscopic ability of activated carbon.
Collapse
|
15
|
Mushtaq RT, Iqbal A, Wang Y, Cheok Q, Abbas S. Parametric Effects of Fused Filament Fabrication Approach on Surface Roughness of Acrylonitrile Butadiene Styrene and Nylon-6 Polymer. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5206. [PMID: 35955141 PMCID: PMC9370062 DOI: 10.3390/ma15155206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022]
Abstract
This research objective is to optimize the surface roughness of Nylon-6 (PA-6) and Acrylonitrile Butadiene Styrene (ABS) by analyzing the parametric effects of the Fused Filament Fabrication (FFF) technique of Three-Dimensional Printing (3DP) parameters. This article discusses how to optimize the surface roughness using Taguchi analysis by the S/N ratio, ANOVA, and modeling methods. The effects of ABS parameters (initial line thickness, raster width, bed temperature, build pattern, extrusion temperature, print speed, and layer thickness) and PA-6 parameters (layer thickness, print speed, extrusion temperature, and build pattern) were investigated with the average surface roughness (Ra) and root-mean-square average surface roughness (Rq) as response parameters. Validation tests revealed that Ra and Rq decreased significantly. After the optimization, the Ra-ABS and Rq-PA-6 for the fabricated optimized values were 1.75 µm and 21.37 µm, respectively. Taguchi optimization of Ra-ABS, Rq-ABS, Ra-PA-6, and Rq-PA-6 was performed to make one step forward to use them in further research and prototypes.
Collapse
Affiliation(s)
- Ray Tahir Mushtaq
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Asif Iqbal
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei; (A.I.); (Q.C.)
| | - Yanen Wang
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Quentin Cheok
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei; (A.I.); (Q.C.)
| | - Saqlain Abbas
- Department of Mechanical Engineering, University of Engineering and Technology, Lahore, Narowal Campus, Narowal 51600, Pakistan;
| |
Collapse
|
16
|
Ghobakhloo F, Azarifar D, Mohammadi M, Ghaemi M. γ‐Fe
2
O
3
@Cu
3
Al‐LDH/HEPES a novel heterogeneous amphoteric catalyst for synthesis of annulated pyrazolo[3,4‐d]pyrimidines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Farzaneh Ghobakhloo
- Department of Organic Chemistry, Faculty of Chemistry Bu–Ali Sina University Hamedan Iran
| | - Davood Azarifar
- Department of Organic Chemistry, Faculty of Chemistry Bu–Ali Sina University Hamedan Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science Ilam University Ilam P.O. Box 69315516 Iran
| | - Masoumeh Ghaemi
- Department of Organic Chemistry, Faculty of Chemistry Bu–Ali Sina University Hamedan Iran
| |
Collapse
|
17
|
Flame Propagation Characteristics of Hybrid Explosion of Ethylene and Polyethylene Mixture under Pressure Accumulation. ENERGIES 2022. [DOI: 10.3390/en15134786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In order to study the flame propagation characteristics of a ethylene/polyethylene hybrid explosion under pressure accumulation, a visual pressure-bearing gas/power hybrid-explosion experimental platform was built. The flame propagation characteristics of polyethylene and ethylene/polyethylene hybrid explosions in the closed vessel were analyzed. The results show that the flame brightness, flame front continuity and average flame propagation velocity of polyethylene dust explosion in the closed vessel increased first and then decreased when the polyethylene dust concentration increased. The curve of the flame propagation velocity with time had obvious pulsation characteristics. Adding 1% and 3% ethylene to different concentrations of polyethylene dust significantly improved its explosion flame brightness, flame front continuity and average flame propagation velocity. Moreover, it also improved the fluctuation amplitude of the explosion flame propagation velocity with time curve. The explosion flame of the polyethylene dust and ethylene/polyethylene hybrid mixture included four zones during the propagation process, which were denoted as the unburned zone, preheated zone, premixed flame zone and dust flame zone. The addition of ethylene to polyethylene dust can significantly increase its thickness of premixed flame zone and preheated zone, and the thickness increased when the ethylene concentration increased.
Collapse
|