1
|
Roghani N, Keramati N. Synthesis, photocatalytic activity for tetracycline degradation under visible light, and kinetic study of Ag/AgCl/ZIF-11 nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:811-832. [PMID: 39704977 DOI: 10.1007/s11356-024-35800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
For the first time, Ag/AgCl/zeolitic imidazolate framework-11 nanocomposite (Ag/AgCl/ZIF-11) as photocatalyst was synthesized and investigated on tetracycline (TC) degradation under visible light. ZIF-11 (Z), Ag/AgCl (A), and four composites (AZ0.1Vis, AZ0.1UV24, AZ0.2UV12, AZ0.2UV24) were made and characterized by XRD, FTIR, Raman, BET, SEM, EDS, XPS, and DRS analysis. The characteristic peaks of ZIF-11 and Ag were observed at 4.3 and 38.2° in the XRD pattern of AZ0.2UV24, respectively. A good distribution of Ag/AgCl on the surface of ZIF-11 was observed by FESEM of AZ0.2UV24. The improvement of visible light absorption ability and reduced e-/h+ recombination of AZ0.2UV24 were confirmed by DRS and PL, respectively. The photocatalytic degradation of TC was described using the zero-order kinetic model with a degradation efficiency of 95.4%. The stability and reusability of AZ0.2UV24 were investigated during three consecutive cycles. Finally, the results of this study provide convincing evidence for using Ag/AgCl/ZIF-11 as highly efficient photocatalysts for removing TC from aqueous solutions.
Collapse
Affiliation(s)
- Nasim Roghani
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, 35131-19111, Iran
| | - Narjes Keramati
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, 35131-19111, Iran.
| |
Collapse
|
2
|
Ahmadipour M, Ardani MR, Sarafbidabad M, Missaoui N, Satgunam M, Singh R, Kahri H, Pal U, Pang AL, Iqbal MS, Garg R, Bhattacharya A. Ultrasonic-assisted synthesis of CaCu 3Ti 4O 12/reduced graphene oxide composites for enhanced photocatalytic degradation of pharmaceutical products: Ibuprofen and Ciprofloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27770-27788. [PMID: 38514592 DOI: 10.1007/s11356-024-32977-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
The objective of this research is to create a highly effective approach for eliminating pollutants from the environment through the process of photocatalytic degradation. The study centers around the production of composites consisting of CaCu3Ti4O12 (CCTO) and reduced graphene oxide (rGO) using an ultrasonic-assisted method, with a focus on their capacity to degrade ibuprofen (IBF) and ciprofloxacin (CIP) via photodegradation. The impact of rGO on the structure, morphology, and optical properties of CCTO was inspected using XRD, FTIR, Raman, FESEM, XPS, BET, and UV-Vis. Morphology characterization showed that rGO particles were dispersed within the CCTO matrix without any specific chemical interaction between CCTO and C in the rGO. The BET analysis revealed that with increasing the amount of rGO in the composite, the specific surface area significantly increased compared to the CCTO standalone. Besides, increasing rGO resulted in a reduction in the optical bandgap energy to around 2.09 eV, makes it highly promising photocatalyst for environmental applications. The photodegradation of IBF and CIP was monitored using visible light irradiation. The results revealed that both components were degraded above 97% after 60 min. The photocatalyst showed an excellent reusability performance with a slight decrease after five runs to 93% photodegradation efficiency.
Collapse
Affiliation(s)
- Mohsen Ahmadipour
- Institute of Power Engineering, Universiti Tenaga Nasional, Serdang, Malaysia.
| | - Mohammad Rezaei Ardani
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Mohsen Sarafbidabad
- Biomedical Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Nadhem Missaoui
- Laboratory of Advanced Materials and Interfaces (LIMA), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5000, Monastir, Tunisia
| | - Meenaloshini Satgunam
- Institute of Power Engineering, Universiti Tenaga Nasional, Serdang, Malaysia
- Department of Mechanical Engineering, Universiti Tenaga Nasional, Serdang, Malaysia
| | - Ramesh Singh
- Center of Advanced Manufacturing and Materials Processing (AMMP), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hamza Kahri
- Laboratory of Advanced Materials and Interfaces (LIMA), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5000, Monastir, Tunisia
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ai Ling Pang
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia
| | - Muhammad Saqlain Iqbal
- Department of Chemistry, COMSATS University Islamabad, Lahore campus, 54000, Lahore, Pakistan
| | - Renuka Garg
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Anish Bhattacharya
- Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
3
|
Tanos F, Razzouk A, Lesage G, Cretin M, Bechelany M. A Comprehensive Review on Modification of Titanium Dioxide-Based Catalysts in Advanced Oxidation Processes for Water Treatment. CHEMSUSCHEM 2024; 17:e202301139. [PMID: 37987138 DOI: 10.1002/cssc.202301139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
It has become necessary to develop effective strategies to prevent and reduce water pollution as a result of the increase in dangerous pollutants in water reservoirs. Consequently, there is a need to design new catalyst materials to promote the efficiency of advanced oxidation processes (AOPs) in the field of wastewater treatment plant to ensure the mineralization of trace organic contaminants. A notable approach gaining attention involves the coupling of sulfate radicals-based AOPs to photocatalysis or electrocatalysis processes, aiming to achieve the complete removal of refractory contaminants into water and carbon dioxide. Titanium dioxide as metal oxide has received great attention for its catalytic application in water purification. TiO2 catalysts offer a multitude of advantages in AOPs. They are characterized by their high photocatalytic activity under both ultraviolet and visible light, making them environmentally friendly due to the absence of toxic byproducts during oxidation. Their versatility is remarkable, finding utility in various AOPs, from photocatalysis to photo-Fenton processes. TiO2's durability ensures long-lasting catalytic activity, which is crucial for continuous treatment processes, and their cost-effectiveness is particularly advantageous. Furthermore, their chemical stability allows it to withstand varying pH conditions. However, the large band gap energy and low electrical conductivity hinder the catalytic reaction effectiveness. This review aims to examine various approaches to enhance the catalytic performance of titanium dioxide, with the objective of enabling more efficient water purification methods.
Collapse
Affiliation(s)
- Fida Tanos
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Antonio Razzouk
- Laboratoire d'Analyses Chimiques, Faculty of Sciences, LAC-Lebanese University, Jdeidet, 90656, Lebanon
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Marc Cretin
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
- Gulf University for Science and Technology, GUST, 32093, Hawally, Kuwait
| |
Collapse
|
4
|
Kumar A, Sharma M, Vaish R. CaCu 3Ti 4O 12 nanoparticle-loaded cotton fabric for dual photocatalytic antibacterial and dye degradation applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117011-117021. [PMID: 37046162 DOI: 10.1007/s11356-023-26835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
CaCu3Ti4O12 (CCTO) nanoparticles (NPs) were screen printed on pristine cotton fabric. The CCTO-coated fabric was characterized using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), Raman, X-ray diffraction (XRD), x-ray photoelectron spectrometer (XPS), and field emission-scanning electron microscopy (FE-SEM). The modified fabric photocatalytic antibacterial and dye-degradation abilities were assessed. After 2 h of bacterial contact, unwashed CCTO-embedded cotton reduced E. coli and S. aureus by 95.1% and 94.3%, respectively. After 20 washing cycles, the modified fabric was able to eliminate S. aureus and E. coli by more than 85%. The cloth coated with CCTO-NPs degraded the methylene blue (MB) dye by 82% in 4 h, as opposed to the pure cotton's 11% degradation rate. The embedding of CCTO-NPs onto the cotton surface had minimal effect on fabric intrinsic properties like tensile strength, abrasion resistance, and water-vapor permeability.
Collapse
Affiliation(s)
- Amit Kumar
- School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, Mandi, India, 175005
- Department of Textile Engineering, Jawaharlal Nehru Government Engineering College Sundernagar, Himachal Pradesh, Mandi, India, 175018
| | - Moolchand Sharma
- School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, Mandi, India, 175005
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, 160012, Chandigarh, India
| | - Rahul Vaish
- School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, Mandi, India, 175005.
| |
Collapse
|
5
|
Makhoul E, Boulos M, Cretin M, Lesage G, Miele P, Cornu D, Bechelany M. CaCu 3Ti 4O 12 Perovskite Materials for Advanced Oxidation Processes for Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2119. [PMID: 37513130 PMCID: PMC10383651 DOI: 10.3390/nano13142119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The many pollutants detected in water represent a global environmental issue. Emerging and persistent organic pollutants are particularly difficult to remove using traditional treatment methods. Electro-oxidation and sulfate-radical-based advanced oxidation processes are innovative removal methods for these contaminants. These approaches rely on the generation of hydroxyl and sulfate radicals during electro-oxidation and sulfate activation, respectively. In addition, hybrid activation, in which these methods are combined, is interesting because of the synergistic effect of hydroxyl and sulfate radicals. Hybrid activation effectiveness in pollutant removal can be influenced by various factors, particularly the materials used for the anode. This review focuses on various organic pollutants. However, it focuses more on pharmaceutical pollutants, particularly paracetamol, as this is the most frequently detected emerging pollutant. It then discusses electro-oxidation, photocatalysis and sulfate radicals, highlighting their unique advantages and their performance for water treatment. It focuses on perovskite oxides as an anode material, with a particular interest in calcium copper titanate (CCTO), due to its unique properties. The review describes different CCTO synthesis techniques, modifications, and applications for water remediation.
Collapse
Affiliation(s)
- Elissa Makhoul
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Madona Boulos
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Marc Cretin
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Philippe Miele
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Institut Universitaire de France, 1 rue Descartes, CEDEX 05, 75231 Paris, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Gulf University for Science and Technology (GUST), West Mishref, Hawalli 32093, Kuwait
| |
Collapse
|
6
|
Effect of Nitrogen Doping in GO as Support in ZnO/GO-N Compounds and Their Photocatalytic Assessment to Degrade the Lignin Molecule. Catalysts 2022. [DOI: 10.3390/catal13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Control of the recombination process and improvement of transport charge carriers could be achieved in photocatalysts by modifying the catalytic support. In the present study, our goal was to study the effect of nitrogen doping on graphene oxide sheets using doping sources such as urea, thiourea, or ethylenediamine to produce GO-N catalytic supports which were used to form ZnO/GO-N systems. The synthesis of ZnO and GO-N was carried out through a hydrothermal process under microwave heating. The ZnO/GO-N compounds were tested to study the degradation of the lignin molecule under UV irradiation. A set of characterization techniques were used to study the ZnO/GO-N compounds, including XPS analyses which confirmed the N-doping in the samples. The ZnO compound reached 40% of lignin degradation in 70 min, while the ZnO/GO-N compound produced 79% of lignin degradation, also in 70 min evidencing the positive effect of the GO-N support. The best results of degradation were obtained when thiourea was used as the N-doping media.
Collapse
|
7
|
Nitrogen-plasma doped ZnO-graphene oxide compounds production and their photocatalytic performance. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|