1
|
Kwon JY, Maeng YS. Human Cord Blood Endothelial Progenitor Cells and Pregnancy Complications (Preeclampsia, Gestational Diabetes Mellitus, and Fetal Growth Restriction). Int J Mol Sci 2024; 25:4444. [PMID: 38674031 PMCID: PMC11050478 DOI: 10.3390/ijms25084444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hemangioblasts give rise to endothelial progenitor cells (EPCs), which also express the cell surface markers CD133 and c-kit. They may differentiate into the outgrowth endothelial cells (OECs) that control neovascularization in the developing embryo. According to numerous studies, reduced levels of EPCs in circulation have been linked to human cardiovascular disorders. Furthermore, preeclampsia and senescence have been linked to levels of EPCs produced from cord blood. Uncertainties surround how preeclampsia affects the way EPCs function. It is reasonable to speculate that preeclampsia may have an impact on the function of fetal EPCs during the in utero period; however, the present literature suggests that maternal vasculopathies, including preeclampsia, damage fetal circulation. Additionally, the differentiation potential and general activity of EPCs may serve as an indicator of the health of the fetal vascular system as they promote neovascularization and repair during pregnancy. Thus, the purpose of this review is to compare-through the assessment of their quantity, differentiation potency, angiogenic activity, and senescence-the angiogenic function of fetal EPCs obtained from cord blood for normal and pregnancy problems (preeclampsia, gestational diabetes mellitus, and fetal growth restriction). This will shed light on the relationship between the angiogenic function of fetal EPCs and pregnancy complications, which could have an effect on the management of long-term health issues like metabolic and cardiovascular disorders in offspring with abnormal vasculature development.
Collapse
Affiliation(s)
- Ja-Young Kwon
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University Health System, Seoul 03722, Republic of Korea;
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University Health System, Seoul 03722, Republic of Korea;
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Chen Y, Wan G, Li Z, Liu X, Zhao Y, Zou L, Liu W. Endothelial progenitor cells in pregnancy-related diseases. Clin Sci (Lond) 2023; 137:1699-1719. [PMID: 37986615 PMCID: PMC10665129 DOI: 10.1042/cs20230853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Placental neovascularization plays a crucial role in fetomaternal circulation throughout pregnancy and is dysregulated in several pregnancy-related diseases, including preeclampsia, gestational diabetes mellitus, and fetal growth restriction. Endothelial progenitor cells (EPCs) are a heterogeneous population of cells that differentiate into mature endothelial cells, which influence vascular homeostasis, neovascularization, and endothelial repair. Since their discovery in 1997 by Asahara et al., the role of EPCs in vascular biology has garnered a lot of interest. However, although pregnancy-related conditions are associated with changes in the number and function of EPCs, the reported findings are conflicting. This review discusses the discovery, isolation, and classification of EPCs and highlights discrepancies between current studies. Overviews of how various diseases affect the numbers and functions of EPCs, the role of EPCs as biomarkers of pregnancy disorders, and the potential therapeutic applications involving EPCs are also provided.
Collapse
Affiliation(s)
- Yangyang Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zeyun Li
- The First Clinical School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Kwon H, Jung YJ, Lee Y, Son GH, Kim HO, Maeng YS, Kwon JY. Impaired Angiogenic Function of Fetal Endothelial Progenitor Cells via PCDH10 in Gestational Diabetes Mellitus. Int J Mol Sci 2023; 24:16082. [PMID: 38003275 PMCID: PMC10671254 DOI: 10.3390/ijms242216082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Maternal hyperglycemia, induced by gestational diabetes mellitus (GDM), has detrimental effects on fetal vascular development, ultimately increasing the risk of cardiovascular diseases in offspring. The potential underlying mechanisms through which these complications occur are due to functional impairment and epigenetic changes in fetal endothelial progenitor cells (EPCs), which remain less defined. We confirm that intrauterine hyperglycemia leads to the impaired angiogenic function of fetal EPCs, as observed through functional assays of outgrowth endothelial cells (OECs) derived from fetal EPCs of GDM pregnancies (GDM-EPCs). Notably, PCDH10 expression is increased in OECs derived from GDM-EPCs, which is associated with the inhibition of angiogenic function in fetal EPCs. Additionally, increased PCDH10 expression is correlated with the hypomethylation of the PCDH10 promoter. Our findings demonstrate that in utero exposure to GDM can induce angiogenic dysfunction in fetal EPCs through altered gene expression and epigenetic changes, consequently increasing the susceptibility to cardiovascular diseases in the offspring of GDM mothers.
Collapse
Affiliation(s)
- Hayan Kwon
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Yun Ji Jung
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Yeji Lee
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Ga-Hyun Son
- Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Hyun Ok Kim
- Korea Cell-Based Artificial Blood Project, Regenerative Medicine Acceleration Foundation, Seoul 04512, Republic of Korea;
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Ja-Young Kwon
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| |
Collapse
|
4
|
Hahn L, Meister S, Mannewitz M, Beyer S, Corradini S, Hasbargen U, Mahner S, Jeschke U, Kolben T, Burges A. Gal-2 Increases H3K4me3 and H3K9ac in Trophoblasts and Preeclampsia. Biomolecules 2022; 12:biom12050707. [PMID: 35625634 PMCID: PMC9139023 DOI: 10.3390/biom12050707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
Preeclampsia (PE) is a severe pregnancy disorder with a pathophysiology not yet completely understood and without curative therapy. The histone modifications H3K4me3 and H3K9ac, as well as galectin-2 (Gal-2), are known to be decreased in PE. To gain a better understanding of the development of PE, the influence of Gal-2 on histone modification in trophoblasts and in syncytialisation was investigated. Immunohistochemical stains of 13 PE and 13 control placentas were correlated, followed by cell culture experiments. An analysis of H3K4me3 and H3K9ac was conducted, as well as cell fusion staining with E-cadherin and β-catenin—both after incubation with Gal-2. The expression of H3K4me3 and H3K9ac correlated significantly with the expression of Gal-2. Furthermore, we detected an increase in H3K4me3 and H3K9ac after the addition of Gal-2 to BeWo/HVT cells. Moreover, there was increased fusion of HVT cells after incubation with Gal-2. Gal-2 is associated with the histone modifications H3K4me3 and H3K9ac in trophoblasts. Furthermore, syncytialisation increased after incubation with Gal-2. Therefore, we postulate that Gal-2 stimulates syncytialisation, possibly mediated by H3K4me3 and H3K9ac. Since Gal-2, as well as H3K4me3 and H3K9ac, are decreased in PE, the induction of Gal-2 might be a promising therapeutic target.
Collapse
Affiliation(s)
- Laura Hahn
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
- Correspondence: ; Tel.: +49-89-440073800
| | - Sarah Meister
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Mareike Mannewitz
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Susanne Beyer
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany;
| | - Uwe Hasbargen
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Sven Mahner
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Udo Jeschke
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
- Department of Gynecology and Obsterics, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Thomas Kolben
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Alexander Burges
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| |
Collapse
|
5
|
Regulatory T Cell Apoptosis during Preeclampsia May Be Prevented by Gal-2. Int J Mol Sci 2022; 23:ijms23031880. [PMID: 35163802 PMCID: PMC8836599 DOI: 10.3390/ijms23031880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
There are several open questions to be answered regarding the pathophysiology of the development of preeclampsia (PE). Numerous factors are involved in its genesis, such as defective placentation, vascular impairment, and an altered immune response. The activation of the adaptive and innate immune system represents an immunologic, particularity during PE. Proinflammatory cytokines are predominantly produced, whereas immune regulatory and immune suppressive factors are diminished in PE. In the present study, we focused on the recruitment of regulatory T cells (Tregs) which are key players in processes mediating immune tolerance. To identify Tregs in the decidua, an immunohistochemical staining of FoxP3 of 32 PE and 34 control placentas was performed. A clearly reduced number of FoxP3-positive cells in the decidua of preeclamptic women could be shown in our analysis (p = 0.036). Furthermore, CCL22, a well-known Treg chemoattractant, was immunohistochemically evaluated. Interestingly, CCL22 expression was increased at the maternal-fetal interface in PE-affected pregnancies (psyncytiotrophoblast = 0.035, pdecidua = 0.004). Therefore, the hypothesis that Tregs undergo apoptosis at the materno-fetal interface during PE was generated, and verified by FoxP3/TUNEL (TdT-mediated dUTP-biotin nick end labeling) staining. Galectin-2 (Gal-2), a member of the family of carbohydrate-binding proteins, which is known to be downregulated during PE, seems to play a pivotal role in T cell apoptosis. By performing a cell culture experiment with isolated Tregs, we could identify Gal-2 as a factor that seems to prevent the apoptosis of Tregs. Our findings point to a cascade of apoptosis of Tregs at the materno-fetal interface during PE. Gal-2 might be a potential therapeutic target in PE to regulate immune tolerance.
Collapse
|
6
|
Sheng W, Gu Y, Chu X, Morgan JA, Cooper DB, Lewis DF, McCathran CE, Wang Y. Upregulation of histone H3K9 methylation in fetal endothelial cells from preeclamptic pregnancies. J Cell Physiol 2020; 236:1866-1874. [PMID: 32700783 DOI: 10.1002/jcp.29970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022]
Abstract
Adverse intrauterine environment has been considered a predisposing factor for fetal programming in preeclampsia. Using human umbilical vein endothelial cells (HUVECs), we specifically explored if aberrant histone methylation occurs in fetal endothelial cells in preeclampsia. Strikingly, we found that increased di-, and tri-methylation of histone H3 lysine 9 (H3K9me2 and H3K9me3) expression were associated with upregulation of methyltransferase G9a and downregulation of endothelial nitric oxide synthase and CuZn-SOD expression in preeclamptic HUVECs. We further demonstrated that hypoxia-induced hypermethylation of H3K9 and reduced CuZn-SOD expression mimicked what were seen in preeclamptic HUVECs and inhibition of G9a could attenuate these hypoxia-induced adverse events. Our study was the first to identify hypermethylation status in fetal endothelial cells in preeclampsia, which provides plausible evidence that increased oxidative stress in the intrauterine environment is likely a mechanism to induce aberrant histone modification in fetal endothelial cells which may have a significant impact on fetal programming in preeclampsia.
Collapse
Affiliation(s)
- Wenji Sheng
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.,Department of Obstetrics and Gynecology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yang Gu
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Xiaodan Chu
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.,Department of Obstetrics and Gynecology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - John A Morgan
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Danielle B Cooper
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - David F Lewis
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Charles E McCathran
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Yuping Wang
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| |
Collapse
|
7
|
Kamrani A, Alipourfard I, Ahmadi-Khiavi H, Yousefi M, Rostamzadeh D, Izadi M, Ahmadi M. The role of epigenetic changes in preeclampsia. Biofactors 2019; 45:712-724. [PMID: 31343798 DOI: 10.1002/biof.1542] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE) is a disorder affecting 2-10% of pregnancies and has a major role for perinatal and maternal mortality and morbidity. PE can be occurred by initiation of new hypertension combined with proteinuria after 20 weeks gestation, as well as various reasons such as inflammatory cytokines, poor trophoblast invasion can be related with PE disease. Environmental factors can cause epigenetic changes including DNA methylation, microRNAs (miRNAs), and histone modification that may be related to different diseases such as PE. Abnormal DNA methylation during placentation is the most important epigenetic factor correlated with PE. Moreover, changes in histone modification like acetylation and also the effect of overregulation or low regulation of miRNAs or long noncoding RNAs on variety signaling pathways can be resulted in PE. The aim of this review is to describe of studies about epigenetic changes in PE and its therapeutic strategies.
Collapse
Affiliation(s)
- Amin Kamrani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Center of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Rostamzadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Reproductive Biology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|