1
|
Dey H, Perez-Hurtado M, Heidelberger R. Syntaxin 3B: A SNARE Protein Required for Vision. Int J Mol Sci 2024; 25:10665. [PMID: 39408994 PMCID: PMC11476516 DOI: 10.3390/ijms251910665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Syntaxin 3 is a member of a large protein family of syntaxin proteins that mediate fusion between vesicles and their target membranes. Mutations in the ubiquitously expressed syntaxin 3A splice form give rise to a serious gastrointestinal disorder in humans called microvillus inclusion disorder, while mutations that additionally involve syntaxin 3B, a splice form that is expressed primarily in retinal photoreceptors and bipolar cells, additionally give rise to an early onset severe retinal dystrophy. In this review, we discuss recent studies elucidating the roles of syntaxin 3B and the regulation of syntaxin 3B functionality in membrane fusion and neurotransmitter release in the vertebrate retina.
Collapse
Affiliation(s)
| | | | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.D.)
| |
Collapse
|
2
|
Stevens-Sostre WA, Hoon M. Cellular and Molecular Mechanisms Regulating Retinal Synapse Development. Annu Rev Vis Sci 2024; 10:377-402. [PMID: 39292551 DOI: 10.1146/annurev-vision-102122-105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Synapse formation within the retinal circuit ensures that distinct neuronal types can communicate efficiently to process visual signals. Synapses thus form the core of the visual computations performed by the retinal circuit. Retinal synapses are diverse but can be broadly categorized into multipartner ribbon synapses and 1:1 conventional synapses. In this article, we review our current understanding of the cellular and molecular mechanisms that regulate the functional establishment of mammalian retinal synapses, including the role of adhesion proteins, synaptic proteins, extracellular matrix and cytoskeletal-associated proteins, and activity-dependent cues. We outline future directions and areas of research that will expand our knowledge of these mechanisms. Understanding the regulators moderating synapse formation and function not only reveals the integrated developmental processes that establish retinal circuits, but also divulges the identity of mechanisms that could be engaged during disease and degeneration.
Collapse
Affiliation(s)
- Whitney A Stevens-Sostre
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Crincoli E, Sacconi R, Servillo A, Tombolini B, Querques G. Role of optical coherence tomography angiography in the evaluation of peripheral ischemia in retinal vein occlusion. Saudi J Ophthalmol 2024; 38:138-143. [PMID: 38988785 PMCID: PMC11232745 DOI: 10.4103/sjopt.sjopt_182_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/14/2023] [Accepted: 11/23/2023] [Indexed: 07/12/2024] Open
Abstract
In the last decade, optical coherence tomography angiography (OCTA) has become part of the clinical management of retinal vein occlusion (RVO), proving in itself a useful technique for both the prediction of visual acuity (VA) outcomes and the risk of complications. In fact, OCTA has been proven a valid imaging technique in detailed assessment of foveal and parafoveal microvascular status in both acute and chronic RVO. Quantitative OCTA data have shown a significant correlation not only with final VA but also with the extension of peripheral ischemia, which represents a major risk factor for macular edema recurrence and neovascularization onset. Finally, wide-field OCTA represents a promising noninvasive technique for the assessment of peripheral ischemia. The aim of this review is to report the main literature findings about microvascular changes and clinical applications of OCTA in the context of RVO-induced peripheral ischemia.
Collapse
Affiliation(s)
- Emanuele Crincoli
- Department of Ophthalmology, University Vita-Salute, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Riccardo Sacconi
- Department of Ophthalmology, University Vita-Salute, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Andrea Servillo
- Department of Ophthalmology, University Vita-Salute, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Beatrice Tombolini
- Department of Ophthalmology, University Vita-Salute, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Giuseppe Querques
- Department of Ophthalmology, University Vita-Salute, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| |
Collapse
|
4
|
Heigl T, Netzer MA, Zanetti L, Ganglberger M, Fernández-Quintero ML, Koschak A. Characterization of two pathological gating-charge substitutions in Cav1.4 L-type calcium channels. Channels (Austin) 2023; 17:2192360. [PMID: 36943941 PMCID: PMC10038055 DOI: 10.1080/19336950.2023.2192360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Cav1.4 L-type calcium channels are predominantly expressed at the photoreceptor terminals and in bipolar cells, mediating neurotransmitter release. Mutations in its gene, CACNA1F, can cause congenital stationary night-blindness type 2 (CSNB2). Due to phenotypic variability in CSNB2, characterization of pathological variants is necessary to better determine pathological mechanism at the site of action. A set of known mutations affects conserved gating charges in the S4 voltage sensor, two of which have been found in male CSNB2 patients. Here, we describe two disease-causing Cav1.4 mutations with gating charge neutralization, exchanging an arginine 964 with glycine (RG) or arginine 1288 with leucine (RL). In both, charge neutralization was associated with a reduction channel expression also reflected in smaller ON gating currents. In RL channels, the strong decrease in whole-cell current densities might additionally be explained by a reduction of single-channel currents. We further identified alterations in their biophysical properties, such as a hyperpolarizing shift of the activation threshold and an increase in slope factor of activation and inactivation. Molecular dynamic simulations in RL substituted channels indicated water wires in both, resting and active, channel states, suggesting the development of omega (ω)currents as a new pathological mechanism in CSNB2. This sum of the respective channel property alterations might add to the differential symptoms in patients beside other factors, such as genomic and environmental deviations.
Collapse
Affiliation(s)
- Thomas Heigl
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| | - Michael A. Netzer
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| | - Lucia Zanetti
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| | - Matthias Ganglberger
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| | - Monica L. Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, Austria
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Alexandra Koschak
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| |
Collapse
|
5
|
Shrestha AP, Rameshkumar N, Boff JM, Rajmanna R, Chandrasegaran T, Frederick CE, Zenisek D, Vaithianathan T. The Effects of Aging on Rod Bipolar Cell Ribbon Synapses. Cells 2023; 12:2385. [PMID: 37830599 PMCID: PMC10572008 DOI: 10.3390/cells12192385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The global health concern posed by age-related visual impairment highlights the need for further research focused on the visual changes that occur during the process of aging. To date, multiple sensory alterations related to aging have been identified, including morphological and functional changes in inner hair cochlear cells, photoreceptors, and retinal ganglion cells. While some age-related morphological changes are known to occur in rod bipolar cells in the retina, their effects on these cells and on their connection to other cells via ribbon synapses remain elusive. To investigate the effects of aging on rod bipolar cells and their ribbon synapses, we compared synaptic calcium currents, calcium dynamics, and exocytosis in zebrafish (Danio rerio) that were middle-aged (MA,18 months) or old-aged (OA, 36 months). The bipolar cell terminal in OA zebrafish exhibited a two-fold reduction in number of synaptic ribbons, an increased ribbon length, and a decrease in local Ca2+ signals at the tested ribbon location, with little change in the overall magnitude of the calcium current or exocytosis in response to brief pulses. Staining of the synaptic ribbons with antibodies specific for PKCa revealed shortening of the inner nuclear and plexiform layers (INL and IPL). These findings shed light on age-related changes in the retina that are related to synaptic ribbons and calcium signals.
Collapse
Affiliation(s)
- Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nirujan Rameshkumar
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johane M. Boff
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rhea Rajmanna
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Courtney E. Frederick
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA (D.Z.)
| | - David Zenisek
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA (D.Z.)
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
6
|
Dittrich A, Ramesh G, Jung M, Schmitz F. Rabconnectin-3α/DMXL2 Is Locally Enriched at the Synaptic Ribbon of Rod Photoreceptor Synapses. Cells 2023; 12:1665. [PMID: 37371135 DOI: 10.3390/cells12121665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Ribbon synapses reliably transmit synaptic signals over a broad signalling range. Rod photoreceptor ribbon synapses are capable of transmitting signals generated by the absorption of single photons. The high precision of ribbon synapses emphasizes the need for particularly efficient signalling mechanisms. Synaptic ribbons are presynaptic specializations of ribbon synapses and are anchored to the active zone. Synaptic ribbons bind many synaptic vesicles that are delivered to the active zone for continuous and faithful signalling. In the present study we demonstrate with independent antibodies at the light- and electron microscopic level that rabconnectin-3α (RC3α)-alternative name Dmx-like 2 (DMXL2)-is localized to the synaptic ribbons of rod photoreceptor synapses in the mouse retina. In the brain, RC3α-containing complexes are known to interact with important components of synaptic vesicles, including Rab3-activating/inactivating enzymes, priming proteins and the vesicular H+-ATPase that acidifies the synaptic vesicle lumen to promote full neurotransmitter loading. The association of RC3α/DMXL2 with rod synaptic ribbons of the mouse retina could enable these structures to deliver only fully signalling-competent synaptic vesicles to the active zone thus contributing to reliable synaptic communication.
Collapse
Affiliation(s)
- Alina Dittrich
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Girish Ramesh
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
- Institute of Biophysics, Saarland University, 66421 Homburg, Germany
| | - Martin Jung
- Institute of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Frank Schmitz
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
7
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Frederick CE, Zenisek D. Ribbon Synapses and Retinal Disease: Review. Int J Mol Sci 2023; 24:5090. [PMID: 36982165 PMCID: PMC10049380 DOI: 10.3390/ijms24065090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Synaptic ribbons are presynaptic protein complexes that are believed to be important for the transmission of sensory information in the visual system. Ribbons are selectively associated with those synapses where graded changes in membrane potential drive continuous neurotransmitter release. Defective synaptic transmission can arise as a result of the mutagenesis of a single ribbon component. Visual diseases that stem from malfunctions in the presynaptic molecular machinery of ribbon synapses in the retina are rare. In this review, we provide an overview of synaptopathies that give rise to retinal malfunction and our present understanding of the mechanisms that underlie their pathogenesis and discuss muscular dystrophies that exhibit ribbon synapse involvement in the pathology.
Collapse
Affiliation(s)
| | - David Zenisek
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Qiu L, Wei S, Yang Y, Zhang R, Ru S, Zhang X. Mechanism of bisphenol S exposure on color sensitivity of zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120670. [PMID: 36395908 DOI: 10.1016/j.envpol.2022.120670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Color vision, initiated from cone cells, is vitally essential for identifying environmental information in vertebrate. Although the retinotoxicity of bisphenol S (BPS) has been reported, data on the influence of BPS treatment on cone cells are scarce. In the present study, transgenic zebrafish (Danio rerio) labeling red and ultraviolet (UV) cones were exposed to BPS (0, 1, 10, and 100 μg/L) during the early stages of retinal development, to elucidate the mechanism underlying its retinal cone toxicity of BPS. The results showed that 10 and 100 μg/L BPS induced oxidative DNA damage, structural damage (decreased number of ribbon synapses), mosaic patterning disorder, and altered expression of genes involved in the phototransduction pathway in red and UV cones. Furthermore, BPS exposure also caused abnormal development of key neurons (retinal ganglion cells, optic nerve, and hypothalamus), responsible for transmitting the light-electrical signal to brain, and thereby resulted in inhibition of light-electrical signal transduction, finally diminishing the spectral sensitivity of zebrafish larvae to long- and short-type light signal at 5 day post fertilization. This study highlights the cone-toxicity of environmental relevant concentrations of BPS, and clarifies the mechanism of color vision impairment induced by BPS at the cellular level, updating the understanding of visual behavior driven by environmental factors.
Collapse
Affiliation(s)
- Liguo Qiu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yixin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
10
|
Optical coherence tomography angiography evaluation of retinal and optic disc microvascular morphological characteristics in retinal vein occlusion. Photodiagnosis Photodyn Ther 2022; 41:103244. [PMID: 36529436 DOI: 10.1016/j.pdpdt.2022.103244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND To evaluate microvascular morphological characteristics of the retina and optic disc (OD) in retinal vein occlusion (RVO) patients using optical coherence tomography angiography (OCTA), compare the results to age- and gender-matched healthy subjects, and determine correlations between OCTA parameters and best-corrected visual acuity (BCVA) and age. METHODS In this retrospective study, right eyes of 53 RVO patients and 51 healthy subjects were compared regarding BCVA, as well as superficial and deep capillary plexus (SCP and DCP) vessel densities (VDs), foveal avascular zone (FAZ) parameters, outer retinal and choriocapillaris flow areas, OD whole and peripapillary VDs, and retinal nerve fiber layer thickness (RNFLT). Retinal vein occlusion patients were further divided into subgroups based on therapy and risk factors, and OCTA parameters were compared. RESULTS Retinal vein occlusion rate or OCTA parameters did not differ significantly by gender (p > 0.05). Retinal vein occlusion patients had significantly decreased BCVA, whole, parafoveal and perifoveal SCP and DCP VDs, as well as VDs 300 µm area around FAZ (FD-300) than healthy subjects (p < 0.001). Their choriocapillaris flow area, RNFLT, whole and peripapillary VDs were also affected. However, FAZ area did not differ significantly between groups. Superior RNFLT (p = 0.016) and whole peripapillary VD (p < 0.001) differed significantly between laser photocoagulation-treated and non-treated patients. The remaining OCTA parameters revealed no significant differences CONCLUSIONS: The RVO and its therapeutic alternatives may affect both OD and retinal VDs. Given its numerous benefits, it seems that OCTA will be used more frequently in clinics for RVO diagnosis, monitoring, and therapeutic response evaluation.
Collapse
|
11
|
Wen X, Liao P, Luo Y, Yang L, Yang H, Liu L, Jiang R. Tandem pore domain acid-sensitive K channel 3 (TASK-3) regulates visual sensitivity in healthy and aging retina. SCIENCE ADVANCES 2022; 8:eabn8785. [PMID: 36070380 PMCID: PMC9451158 DOI: 10.1126/sciadv.abn8785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Retinal ganglion cells (RGCs) not only collect but also integrate visual signals and send them from the retina to the brain. The mechanisms underlying the RGC integration of synaptic activity within retinal circuits have not been fully explored. Here, we identified a pronounced expression of tandem pore domain acid-sensitive potassium channel 3 (TASK-3), a two-pore domain potassium channel (K2P), in RGCs. By using a specific antagonist and TASK-3 knockout mice, we found that TASK-3 regulates the intrinsic excitability and the light sensitivity of RGCs by sensing neuronal activity-dependent extracellular acidification. In vivo, the blockade or loss of TASK-3 dampened pupillary light reflex, visual acuity, and contrast sensitivity. Furthermore, overexpressing TASK-3 specifically in RGCs using an adeno-associated virus approach restored the visual function of TASK-3 knockout mice and aged mice where the expression and function of TASK-3 were reduced. Thus, our results provide evidence that implicates a critical role of K2P in visual processing in the retina.
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Ophthalmology, Department of Optometry and Visual Science, Laboratory of Optometry and Vision Sciences, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuncheng Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Longqian Liu
- Department of Ophthalmology, Department of Optometry and Visual Science, Laboratory of Optometry and Vision Sciences, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
12
|
Schmid V, Wurzel A, Wetzel CH, Plössl K, Bruckmann A, Luckner P, Weber BHF, Friedrich U. Retinoschisin and novel Na/K-ATPase interaction partners Kv2.1 and Kv8.2 define a growing protein complex at the inner segments of mammalian photoreceptors. Cell Mol Life Sci 2022; 79:448. [PMID: 35876901 PMCID: PMC9314279 DOI: 10.1007/s00018-022-04409-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
The RS1 gene on Xp 22.13 encodes retinoschisin which is known to directly interact with the retinal Na/K-ATPase at the photoreceptor inner segments. Pathologic mutations in RS1 cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy in young males. To further delineate the retinoschisin-Na/K-ATPase complex, co-immunoprecipitation was performed with porcine and murine retinal lysates targeting the ATP1A3 subunit. This identified the voltage-gated potassium (Kv) channel subunits Kv2.1 and Kv8.2 as direct interaction partners of the retinal Na/K-ATPase. Colocalization of the individual components of the complex was demonstrated at the membrane of photoreceptor inner segments. We further show that retinoschisin-deficiency, a frequent consequence of molecular pathology in XLRS, causes mislocalization of the macromolecular complex during postnatal retinal development with a simultaneous reduction of Kv2.1 and Kv8.2 protein expression, while the level of retinal Na/K-ATPase expression remains unaffected. Patch-clamp analysis revealed no effect of retinoschisin-deficiency on Kv channel mediated potassium ion currents in vitro. Together, our data suggest that Kv2.1 and Kv8.2 together with retinoschisin and the retinal Na/K-ATPase are integral parts of a macromolecular complex at the photoreceptor inner segments. Defective compartmentalization of this complex due to retinoschisin-deficiency may be a crucial step in initial XLRS pathogenesis.
Collapse
Affiliation(s)
- Verena Schmid
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Alexander Wurzel
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology, Protein Mass Spectrometry Group, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Patricia Luckner
- Institute of Biochemistry, Genetics and Microbiology, Protein Mass Spectrometry Group, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
- Institute of Clinical Human Genetics, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
13
|
Ciliary Proteins Repurposed by the Synaptic Ribbon: Trafficking Myristoylated Proteins at Rod Photoreceptor Synapses. Int J Mol Sci 2022; 23:ijms23137135. [PMID: 35806143 PMCID: PMC9266639 DOI: 10.3390/ijms23137135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
The Unc119 protein mediates transport of myristoylated proteins to the photoreceptor outer segment, a specialized primary cilium. This transport activity is regulated by the GTPase Arl3 as well as by Arl13b and Rp2 that control Arl3 activation/inactivation. Interestingly, Unc119 is also enriched in photoreceptor synapses and can bind to RIBEYE, the main component of synaptic ribbons. In the present study, we analyzed whether the known regulatory proteins, that control the Unc119-dependent myristoylated protein transport at the primary cilium, are also present at the photoreceptor synaptic ribbon complex by using high-resolution immunofluorescence and immunogold electron microscopy. We found Arl3 and Arl13b to be enriched at the synaptic ribbon whereas Rp2 was predominantly found on vesicles distributed within the entire terminal. These findings indicate that the synaptic ribbon could be involved in the discharge of Unc119-bound lipid-modified proteins. In agreement with this hypothesis, we found Nphp3 (Nephrocystin-3), a myristoylated, Unc119-dependent cargo protein enriched at the basal portion of the ribbon in close vicinity to the active zone. Mutations in Nphp3 are known to be associated with Senior–Løken Syndrome 3 (SLS3). Visual impairment and blindness in SLS3 might thus not only result from ciliary dysfunctions but also from malfunctions of the photoreceptor synapse.
Collapse
|
14
|
Gething C, Ferrar J, Misra B, Howells G, Andrzejewski AL, Bowen ME, Choi UB. Conformational change of Syntaxin-3b in regulating SNARE complex assembly in the ribbon synapses. Sci Rep 2022; 12:9261. [PMID: 35661757 PMCID: PMC9166750 DOI: 10.1038/s41598-022-09654-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Neurotransmitter release of synaptic vesicles relies on the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consisting of syntaxin and SNAP-25 on the plasma membrane and synaptobrevin on the synaptic vesicle. The formation of the SNARE complex progressively zippers towards the membranes, which drives membrane fusion between the plasma membrane and the synaptic vesicle. However, the underlying molecular mechanism of SNARE complex regulation is unclear. In this study, we investigated the syntaxin-3b isoform found in the retinal ribbon synapses using single-molecule fluorescence resonance energy transfer (smFRET) to monitor the conformational changes of syntaxin-3b that modulate the SNARE complex formation. We found that syntaxin-3b is predominantly in a self-inhibiting closed conformation, inefficiently forming the ternary SNARE complex. Conversely, a phosphomimetic mutation (T14E) at the N-terminal region of syntaxin-3b promoted the open conformation, similar to the constitutively open form of syntaxin LE mutant. When syntaxin-3b is bound to Munc18-1, SNARE complex formation is almost completely blocked. Surprisingly, the T14E mutation of syntaxin-3b partially abolishes Munc18-1 regulation, acting as a conformational switch to trigger SNARE complex assembly. Thus, we suggest a model where the conformational change of syntaxin-3b induced by phosphorylation initiates the release of neurotransmitters in the ribbon synapses.
Collapse
Affiliation(s)
- Claire Gething
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Joshua Ferrar
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Bishal Misra
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Giovanni Howells
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.,Quantum-Si, Inc, Guilford, CT, 06437, USA
| | - Ucheor B Choi
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA. .,Quantum-Si, Inc, Guilford, CT, 06437, USA.
| |
Collapse
|
15
|
Metabotropic Glutamate Receptors at Ribbon Synapses in the Retina and Cochlea. Cells 2022; 11:cells11071097. [PMID: 35406660 PMCID: PMC8998116 DOI: 10.3390/cells11071097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Our senses define our view of the world. They allow us to adapt to environmental stimuli and are essential for communication and social behaviour. For most humans, seeing and hearing are central senses for their daily life. Our eyes and ears respond to an extraordinary broad range of stimuli covering about 12 log units of light intensity or acoustic power, respectively. The cellular basis is represented by sensory cells (photoreceptors in the retina and inner hair cells in the cochlea) that convert sensory inputs into electrical signals. Photoreceptors and inner hair cells have developed a specific pre-synaptic structure, termed synaptic ribbon, that is decorated with numerous vesicles filled with the excitatory neurotransmitter glutamate. At these ribbon synapses, glutamatergic signal transduction is guided by distinct sets of metabotropic glutamate receptors (mGluRs). MGluRs belong to group II and III of the receptor classification can inhibit neuronal activity, thus protecting neurons from overstimulation and subsequent degeneration. Consequently, dysfunction of mGluRs is associated with vision and hearing disorders. In this review, we introduce the principle characteristics of ribbon synapses and describe group II and III mGluRs in these fascinating structures in the retina and cochlea.
Collapse
|
16
|
Peng WH, Liao ML, Huang WC, Liu PK, Levi SR, Tseng YJ, Lee CY, Yeh LK, Chen KJ, Chien CL, Wang NK. Conditional Deletion of Activating Rearranged During Transfection Receptor Tyrosine Kinase Leads to Impairment of Photoreceptor Ribbon Synapses and Disrupted Visual Function in Mice. Front Neurosci 2021; 15:728905. [PMID: 34803580 PMCID: PMC8602685 DOI: 10.3389/fnins.2021.728905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: The rearranged during transfection (RET) receptor tyrosine kinase plays a key role in transducing signals related to cell growth and differentiation. Ret mutant mice show abnormal retinal activity and abnormal levels and morphology of bipolar cells, yet die on the 21st day after birth as a result of renal underdevelopment. To extend the observation period, we generated the Ret conditional knockout Chx10-Cre;C-Ret lx/lx mouse model and analyzed the retinal function and morphological changes in mature and aging Chx10-Cre;C-Ret lx/lx mice. Methods: Retina-specific depletion of Ret was achieved using mice with floxed alleles of the Ret gene with CHX10-driven Cre recombinase; floxed mice without Cre expression were used as controls. Retinal function was examined using electroretinography (ERG), and 2-, 4-, 12-, and 24-month-old mice were analyzed by hematoxylin staining and immunohistochemistry to evaluate retinal morphological alterations. The ultrastructure of photoreceptor synapses was evaluated using electron microscopy. Results: The results of the ERG testing showed that b-wave amplitudes were reduced in Chx10-Cre;C-Ret lx/lx mice, whereas a-waves were not affected. A histopathological analysis revealed a thinner and disorganized outer plexiform layer at the ages of 12 and 24 months in Chx10-Cre;C-Ret lx/lx mice. Moreover, the data provided by immunohistochemistry showed defects in the synapses of photoreceptor cells. This result was confirmed at the ultrastructural level, thus supporting the participation of Ret in the morphological changes of the synaptic ribbon. Conclusion: Our results provide evidence of the role of Ret in maintaining the function of the retina, which was essential for preserving the structure of the synaptic ribbon and supporting the integrity of the outer plexiform layer.
Collapse
Affiliation(s)
- Wei-Hao Peng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Meng-Lin Liao
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Chun Huang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | - Sarah R. Levi
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | - Yun-Ju Tseng
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | - Chia-Ying Lee
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nan-Kai Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| |
Collapse
|
17
|
Kesharwani A, Schwarz K, Dembla E, Dembla M, Schmitz F. Early Changes in Exo- and Endocytosis in the EAE Mouse Model of Multiple Sclerosis Correlate with Decreased Synaptic Ribbon Size and Reduced Ribbon-Associated Vesicle Pools in Rod Photoreceptor Synapses. Int J Mol Sci 2021; 22:ijms221910789. [PMID: 34639129 PMCID: PMC8509850 DOI: 10.3390/ijms221910789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system that finally leads to demyelination. Demyelinating optic neuritis is a frequent symptom in MS. Recent studies also revealed synapse dysfunctions in MS patients and MS mouse models. We previously reported alterations of photoreceptor ribbon synapses in the experimental auto-immune encephalomyelitis (EAE) mouse model of MS. In the present study, we found that the previously observed decreased imunosignals of photoreceptor ribbons in early EAE resulted from a decrease in synaptic ribbon size, whereas the number/density of ribbons in photoreceptor synapses remained unchanged. Smaller photoreceptor ribbons are associated with fewer docked and ribbon-associated vesicles. At a functional level, depolarization-evoked exocytosis as monitored by optical recording was diminished even as early as on day 7 after EAE induction. Moreover compensatory, post-depolarization endocytosis was decreased. Decreased post-depolarization endocytosis in early EAE correlated with diminished synaptic enrichment of dynamin3. In contrast, basal endocytosis in photoreceptor synapses of resting non-depolarized retinal slices was increased in early EAE. Increased basal endocytosis correlated with increased de-phosphorylation of dynamin1. Thus, multiple endocytic pathways in photoreceptor synapse are differentially affected in early EAE and likely contribute to the observed synapse pathology in early EAE.
Collapse
Affiliation(s)
- Ajay Kesharwani
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
- Correspondence:
| | - Karin Schwarz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
| | - Ekta Dembla
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mayur Dembla
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Frank Schmitz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
| |
Collapse
|
18
|
Hays CL, Sladek AL, Thoreson WB. Resting and stimulated mouse rod photoreceptors show distinct patterns of vesicle release at ribbon synapses. J Gen Physiol 2021; 152:211528. [PMID: 33175961 PMCID: PMC7664508 DOI: 10.1085/jgp.202012716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 01/04/2023] Open
Abstract
The vertebrate visual system can detect and transmit signals from single photons. To understand how single-photon responses are transmitted, we characterized voltage-dependent properties of glutamate release in mouse rods. We measured presynaptic glutamate transporter anion current and found that rates of synaptic vesicle release increased with voltage-dependent Ca2+ current. Ca2+ influx and release rate also rose with temperature, attaining a rate of ∼11 vesicles/s/ribbon at -40 mV (35°C). By contrast, spontaneous release events at hyperpolarized potentials (-60 to -70 mV) were univesicular and occurred at random intervals. However, when rods were voltage clamped at -40 mV for many seconds to simulate maintained darkness, release occurred in coordinated bursts of 17 ± 7 quanta (mean ± SD; n = 22). Like fast release evoked by brief depolarizing stimuli, these bursts involved vesicles in the readily releasable pool of vesicles and were triggered by the opening of nearby ribbon-associated Ca2+ channels. Spontaneous release rates were elevated and bursts were absent after genetic elimination of the Ca2+ sensor synaptotagmin 1 (Syt1). This study shows that at the resting potential in darkness, rods release glutamate-filled vesicles from a pool at the base of synaptic ribbons at low rates but in Syt1-dependent bursts. The absence of bursting in cones suggests that this behavior may have a role in transmitting scotopic responses.
Collapse
Affiliation(s)
- Cassandra L Hays
- Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE.,Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Asia L Sladek
- Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Wallace B Thoreson
- Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE.,Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
19
|
Almutairi F, Almeshari N, Ahmad K, Magliyah MS, Schatz P. Congenital stationary night blindness: an update and review of the disease spectrum in Saudi Arabia. Acta Ophthalmol 2021; 99:581-591. [PMID: 33369259 DOI: 10.1111/aos.14693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022]
Abstract
Congenital stationary night blindness (CSNB) is a group of rare, mainly stationary disorders of the retina, resulting from dysfunction of several specific and essential visual processing mechanisms. The inheritance is often recessive and as such, CSNB may be more common among populations with a high degree of consanguinity. Here, we present a topic update and a review of the clinical and molecular genetic spectrum of CSNB in Saudi Arabia. Since a major review article on CSNB in 2015, which described 17 genes underlying CSNB, an additional four genes have been incriminated in autosomal recessive CSNB: RIMS2, GNB3, GUCY2D and ABCA4. These have been associated with syndromic cone-rod synaptic disease, ON bipolar cell dysfunction with reduced cone sensitivity, CSNB with dysfunction of the phototransduction (Riggs type) and CSNB with cone-rod dystrophy, respectively. In Saudi Arabia, a total of 24 patients with CSNB were identified, using a combination of literature search and retrospective study of previously unpublished cases. Recessive mutations in TRPM1 and CABP4 accounted for the majority of cases (5 and 13 for each gene, respectively). These genes were associated with complete (cCSNB) and incomplete (icCSNB), respectively, and were associated with high myopia in the former and hyperopia in the latter. Four novel mutations were identified. For the first time, we describe the fundus albipunctatus in two patients from Saudi Arabia, caused by recessive mutation in RDH5 and RPE65, where the former in addition featured findings compatible with cone dystrophy. No cases were identified with any dominantly inherited CSNB.
Collapse
Affiliation(s)
- Faris Almutairi
- Vitreoretinal Division King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
- King Khalid University Hospital Riyadh Saudi Arabia
| | | | - Khabir Ahmad
- Research Department King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
| | - Moustafa S. Magliyah
- Vitreoretinal Division King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
- Ophthalmology Department Prince Mohammed Medical City AlJouf Saudi Arabia
| | - Patrik Schatz
- Vitreoretinal Division King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
- Department of Ophthalmology Clinical Sciences Skane University Hospital Lund University Lund Sweden
| |
Collapse
|
20
|
Rashwan R, Hunt DM, Carvalho LS. The role of voltage-gated ion channels in visual function and disease in mammalian photoreceptors. Pflugers Arch 2021; 473:1455-1468. [PMID: 34255151 DOI: 10.1007/s00424-021-02595-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022]
Abstract
Light activation of the classical light-sensing retinal neurons, the photoreceptors, results in a graded change in membrane potential that ultimately leads to a reduction in neurotransmitter release to the post-synaptic retinal neurons. Photoreceptors show striking powers of adaptation, and for visual processing to function optimally, they must adjust their gain to remain responsive to different levels of ambient light intensity. The presence of a tightly controlled balance of inward and outward currents modulated by several different types of ion channels is what gives photoreceptors their remarkably dynamic operating range. Part of the resetting and modulation of this operating range is controlled by potassium and calcium voltage-gated channels, which are involved in setting the dark resting potential and synapse signal processing, respectively. Their essential contribution to visual processing is further confirmed in patients suffering from cone dystrophy with supernormal rod response (CDSRR) and congenital stationary night blindness type 2 (CSNB2), both conditions that lead to irreversible vision loss. This review will discuss these two types of voltage-gated ion channels present in photoreceptors, focussing on their structure and physiology, and their role in visual processing. It will also discuss the use and benefits of knockout mouse models to further study the function of these channels and what routes to potential treatments could be applied for CDSRR and CSNB2.
Collapse
Affiliation(s)
- Rabab Rashwan
- Lions Eye Institute, Nedlands, Western Australia, 6009, Australia
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| | - David M Hunt
- Lions Eye Institute, Nedlands, Western Australia, 6009, Australia
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, Western Australia, 6009, Australia
- School of Biological Sciences, University of Western Australia, Nedlands, Western Australia, 6009, Australia
| | - Livia S Carvalho
- Lions Eye Institute, Nedlands, Western Australia, 6009, Australia.
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
21
|
Lotter S, Schafer M, Zeitler J, Schober R. Saturating Receiver and Receptor Competition in Synaptic DMC: Deterministic and Statistical Signal Models. IEEE Trans Nanobioscience 2021; 20:464-479. [PMID: 34166196 DOI: 10.1109/tnb.2021.3092279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptic communication is based on a biological Molecular Communication (MC) system which may serve as a blueprint for the design of synthetic MC systems. However, the physical modeling of synaptic MC is complicated by the possible saturation of the molecular receiver caused by the competition of neurotransmitters (NTs) for postsynaptic receptors. Receiver saturation renders the system behavior nonlinear in the number of released NTs and is commonly neglected in existing analytical models. Furthermore, due to the ligands' competition for receptors (and vice versa), the individual binding events at the molecular receiver are in general not statistically independent and the commonly used binomial model for the statistics of the received signal does not apply. Hence, in this work, we propose a novel deterministic model for receptor saturation in terms of a state-space description based on an eigenfunction expansion of Fick's diffusion equation. The presented solution is numerically stable and computationally efficient. Employing the proposed deterministic model, we show that saturation at the molecular receiver effectively reduces the peak-value of the expected received signal and accelerates the clearance of NTs as compared to the case when receptor occupancy is neglected. We further derive a statistical model for the received signal in terms of the hypergeometric distribution which accounts for the competition of NTs for receptors and the competition of receptors for NTs. The proposed statistical model reveals how the signal statistics are shaped by the number of released NTs, the number of receptors, and the binding kinetics of the receptors, respectively, in the presence of competition. In particular, we show that the impact of these parameters on the signal variance is qualitatively different depending on the relative numbers of NTs and receptors. Finally, the accuracy of the proposed deterministic and statistical models is verified by particle-based computer simulations.
Collapse
|
22
|
Retinal Ganglion Cell Transplantation: Approaches for Overcoming Challenges to Functional Integration. Cells 2021; 10:cells10061426. [PMID: 34200991 PMCID: PMC8228580 DOI: 10.3390/cells10061426] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
As part of the central nervous system, mammalian retinal ganglion cells (RGCs) lack significant regenerative capacity. Glaucoma causes progressive and irreversible vision loss by damaging RGCs and their axons, which compose the optic nerve. To functionally restore vision, lost RGCs must be replaced. Despite tremendous advancements in experimental models of optic neuropathy that have elucidated pathways to induce endogenous RGC neuroprotection and axon regeneration, obstacles to achieving functional visual recovery through exogenous RGC transplantation remain. Key challenges include poor graft survival, low donor neuron localization to the host retina, and inadequate dendritogenesis and synaptogenesis with afferent amacrine and bipolar cells. In this review, we summarize the current state of experimental RGC transplantation, and we propose a set of standard approaches to quantifying and reporting experimental outcomes in order to guide a collective effort to advance the field toward functional RGC replacement and optic nerve regeneration.
Collapse
|
23
|
Piccolo is essential for the maintenance of mouse retina but not cochlear hair cell function. Aging (Albany NY) 2021; 13:11678-11695. [PMID: 33882456 PMCID: PMC8109093 DOI: 10.18632/aging.202861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Piccolo is a presynaptic protein with high conservation among different species, and the expression of Piccolo is extensive in vertebrates. Recently, a small fragment of Piccolo (Piccolino), arising due to the incomplete splicing of intron 5/6, was found to be present in the synapses of retinas and cochleae. However, the comprehensive function of Piccolo in the retina and cochlea remains unclear. In this study, we generated Piccolo knockout mice using CRISPR-Cas9 technology to explore the function of Piccolo. Unexpectedly, whereas no abnormalities were found in the cochlear hair cells of the mutant mice, significant differences were found in the retinas, in which two layers (the outer nuclear layer and the outer plexiform layer) were absent. Additionally, the amplitudes of electroretinograms were significantly reduced and pigmentation was observed in the fundoscopy of the mutant mouse retinas. The expression levels of Bassoon, a homolog of Piccolo, as well as synapse-associated proteins CtBP1, CtBP2, Kif3A, and Rim1 were down-regulated. The numbers of ribbon synapses in the retinas of the mutant mice were also reduced. Altogether, the phenotype of Piccolo-/- mice resembled the symptoms of retinitis pigmentosa (RP) in humans, suggesting Piccolo might be a candidate gene of RP and indicates Piccolo knockout mice are a good model for elucidating the molecular mechanisms of RP.
Collapse
|
24
|
Functional compartmentalization of photoreceptor neurons. Pflugers Arch 2021; 473:1493-1516. [PMID: 33880652 DOI: 10.1007/s00424-021-02558-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Retinal photoreceptors are neurons that convert dynamically changing patterns of light into electrical signals that are processed by retinal interneurons and ultimately transmitted to vision centers in the brain. They represent the essential first step in seeing without which the remainder of the visual system is rendered moot. To support this role, the major functions of photoreceptors are segregated into three main specialized compartments-the outer segment, the inner segment, and the pre-synaptic terminal. This compartmentalization is crucial for photoreceptor function-disruption leads to devastating blinding diseases for which therapies remain elusive. In this review, we examine the current understanding of the molecular and physical mechanisms underlying photoreceptor functional compartmentalization and highlight areas where significant knowledge gaps remain.
Collapse
|
25
|
Liu B, Hu Y, Ma G, Xiao Y, Zhang B, Liang Y, Zhong P, Zeng X, Lin Z, Kong H, Wu G, Du Z, Fang Y, Huang M, Wang L, Yang X, Yu H. Reduced Retinal Microvascular Perfusion in Patients With Stroke Detected by Optical Coherence Tomography Angiography. Front Aging Neurosci 2021; 13:628336. [PMID: 33927607 PMCID: PMC8078175 DOI: 10.3389/fnagi.2021.628336] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Currently there is a shortage of biomarkers for stroke, one of the leading causes of death and disability in aging populations. Retinal vessels offer a unique and accessible “window” to study the microvasculature in vivo. However, the relationship between the retinal microvasculature and stroke is not entirely clear. To investigate the retinal microvascular characteristics in stroke, we recruited patients with stroke and age-matched control subjects from a tertiary hospital in China. The macular vessel density (VD) in the superficial capillary plexus (SCP) and deep capillary plexus (DCP), foveal avascular zone (FAZ) metrics, and optical coherence tomography angiography (OCTA) measured optic disc VD were recorded for analysis. A total of 189 patients with stroke and 195 control subjects were included. After adjusting for sex, visual acuity, systolic and diastolic blood pressure, a history of smoking, levels of hemoglobulin (HbA1c), cholesterol, and high-density lipoprotein (HDL), the macular VD of SCP and DCP in all sectors was decreased in patients with stroke. In the stroke group, the VD around the FAZ and the VD of the optic disk were lower. Logistic regression found the parafovea-superior-hemi VD of DCP > 54.53% [odds ratio (OR): 0.169] as a protective factor of stroke. Using the integration of all OCTA parameters and traditional risk factors, the area under the receiver operating characteristic (AUC) curve of distinguishing patients with stroke was 0.962, with a sensitivity of 0.944 and a specificity of 0.871. Our study demonstrates that the retinal VD is decreased in patients with stroke independently of the traditional risk factors of stroke, which may shed light on the monitoring of stroke using the retinal microvascular parameters.
Collapse
Affiliation(s)
- Baoyi Liu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yijun Hu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Refractive Surgery Center, Aier Institute of Refractive Surgery, Guangzhou Aier Eye Hospital, Guangzhou, China.,Aier School of Ophthalmology, Central South University, Changsha, China
| | - Guixian Ma
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Xiao
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Bin Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yingying Liang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Pingting Zhong
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Zeng
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhanjie Lin
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Huiqian Kong
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guanrong Wu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zijing Du
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ying Fang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Manqing Huang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaohong Yang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Honghua Yu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli. Neuron 2021; 109:1692-1706.e8. [PMID: 33798407 PMCID: PMC8153253 DOI: 10.1016/j.neuron.2021.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022]
Abstract
The retina dissects the visual scene into parallel information channels, which extract specific visual features through nonlinear processing. The first nonlinear stage is typically considered to occur at the output of bipolar cells, resulting from nonlinear transmitter release from synaptic terminals. In contrast, we show here that bipolar cells themselves can act as nonlinear processing elements at the level of their somatic membrane potential. Intracellular recordings from bipolar cells in the salamander retina revealed frequent nonlinear integration of visual signals within bipolar cell receptive field centers, affecting the encoding of artificial and natural stimuli. These nonlinearities provide sensitivity to spatial structure below the scale of bipolar cell receptive fields in both bipolar and downstream ganglion cells and appear to arise at the excitatory input into bipolar cells. Thus, our data suggest that nonlinear signal pooling starts earlier than previously thought: that is, at the input stage of bipolar cells. Some retinal bipolar cells represent visual contrast in a nonlinear fashion These bipolar cells also nonlinearly integrate visual signals over space The spatial nonlinearity affects the encoding of natural stimuli by bipolar cells The nonlinearity results from feedforward input, not from feedback inhibition
Collapse
|
27
|
Parato J, Bartolini F. The microtubule cytoskeleton at the synapse. Neurosci Lett 2021; 753:135850. [PMID: 33775740 DOI: 10.1016/j.neulet.2021.135850] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
In neurons, microtubules (MTs) provide routes for transport throughout the cell and structural support for dendrites and axons. Both stable and dynamic MTs are necessary for normal neuronal functions. Research in the last two decades has demonstrated that MTs play additional roles in synaptic structure and function in both pre- and postsynaptic elements. Here, we review current knowledge of the functions that MTs perform in excitatory and inhibitory synapses, as well as in the neuromuscular junction and other specialized synapses, and discuss the implications that this knowledge may have in neurological disease.
Collapse
Affiliation(s)
- Julie Parato
- Columbia University Medical Center, Department of Pathology & Cell Biology, 630 West 168(th)Street, P&S 15-421, NY, NY, 10032, United States; SUNY Empire State College, Department of Natural Sciences, 177 Livingston Street, Brooklyn, NY, 11201, United States
| | - Francesca Bartolini
- Columbia University Medical Center, Department of Pathology & Cell Biology, 630 West 168(th)Street, P&S 15-421, NY, NY, 10032, United States.
| |
Collapse
|
28
|
Function of cone and cone-related pathways in Ca V1.4 IT mice. Sci Rep 2021; 11:2732. [PMID: 33526839 PMCID: PMC7851161 DOI: 10.1038/s41598-021-82210-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 11/09/2022] Open
Abstract
CaV1.4 L-type calcium channels are predominantly expressed in photoreceptor terminals playing a crucial role for synaptic transmission and, consequently, for vision. Human mutations in the encoding gene are associated with congenital stationary night blindness type-2. Besides rod-driven scotopic vision also cone-driven photopic responses are severely affected in patients. The present study therefore examined functional and morphological changes in cones and cone-related pathways in mice carrying the CaV1.4 gain-of function mutation I756T (CaV1.4-IT) using multielectrode array, patch-clamp and immunohistochemical analyses. CaV1.4-IT ganglion cell responses to photopic stimuli were seen only in a small fraction of cells indicative of a major impairment in the cone pathway. Though cone photoreceptors underwent morphological rearrangements, they retained their ability to release glutamate. Our functional data suggested a postsynaptic cone bipolar cell defect, supported by the fact that the majority of cone bipolar cells showed sprouting, while horizontal cells maintained contacts with cones and cone-to-horizontal cell input was preserved. Furthermore a reduction of basal Ca2+ influx by a calcium channel blocker was not sufficient to rescue synaptic transmission deficits caused by the CaV1.4-IT mutation. Long term treatments with low-dose Ca2+ channel blockers might however be beneficial reducing Ca2+ toxicity without major effects on ganglion cells responses.
Collapse
|
29
|
Campbell JR, Li H, Wang Y, Kozhemyakin M, Hunt AJ, Liu X, Janz R, Heidelberger R. Phosphorylation of the Retinal Ribbon Synapse Specific t-SNARE Protein Syntaxin3B Is Regulated by Light via a Ca 2 +-Dependent Pathway. Front Cell Neurosci 2020; 14:587072. [PMID: 33192329 PMCID: PMC7606922 DOI: 10.3389/fncel.2020.587072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
Neurotransmitter release at retinal ribbon-style synapses utilizes a specialized t-SNARE protein called syntaxin3B (STX3B). In contrast to other syntaxins, STX3 proteins can be phosphorylated in vitro at T14 by Ca2+/calmodulin-dependent protein kinase II (CaMKII). This modification has the potential to modulate SNARE complex formation required for neurotransmitter release in an activity-dependent manner. To determine the extent to which T14 phosphorylation occurs in vivo in the mammalian retina and characterize the pathway responsible for the in vivo phosphorylation of T14, we utilized quantitative immunofluorescence to measure the levels of STX3 and STX3 phosphorylated at T14 (pSTX3) in the synaptic terminals of mouse retinal photoreceptors and rod bipolar cells (RBCs). Results demonstrate that STX3B phosphorylation at T14 is light-regulated and dependent upon the elevation of intraterminal Ca2+. In rod photoreceptor terminals, the ratio of pSTX3 to STX3 was significantly higher in dark-adapted mice, when rods are active, than in light-exposed mice. By contrast, in RBC terminals, the ratio of pSTX3 to STX3 was higher in light-exposed mice, when these terminals are active, than in dark-adapted mice. These results were recapitulated in the isolated eyecup preparation, but only when Ca2+ was included in the external medium. In the absence of external Ca2+, pSTX3 levels remained low regardless of light/dark exposure. Using the isolated RBC preparation, we next showed that elevation of intraterminal Ca2+ alone was sufficient to increase STX3 phosphorylation at T14. Furthermore, both the non-specific kinase inhibitor staurosporine and the selective CaMKII inhibitor AIP inhibited the Ca2+-dependent increase in the pSTX3/STX3 ratio in isolated RBC terminals, while in parallel experiments, AIP suppressed RBC depolarization-evoked exocytosis, measured using membrane capacitance measurements. Our data support a novel, illumination-regulated modulation of retinal ribbon-style synapse function in which activity-dependent Ca2+ entry drives the phosphorylation of STX3B at T14 by CaMKII, which in turn, modulates the ability to form SNARE complexes required for exocytosis.
Collapse
Affiliation(s)
- Joseph R Campbell
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hongyan Li
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yanzhao Wang
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Maxim Kozhemyakin
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Albert J Hunt
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoqin Liu
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Roger Janz
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
30
|
Sensing through Non-Sensing Ocular Ion Channels. Int J Mol Sci 2020; 21:ijms21186925. [PMID: 32967234 PMCID: PMC7554890 DOI: 10.3390/ijms21186925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.
Collapse
|
31
|
Yoshimatsu T, Schröder C, Nevala NE, Berens P, Baden T. Fovea-like Photoreceptor Specializations Underlie Single UV Cone Driven Prey-Capture Behavior in Zebrafish. Neuron 2020; 107:320-337.e6. [PMID: 32473094 PMCID: PMC7383236 DOI: 10.1016/j.neuron.2020.04.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/13/2020] [Accepted: 04/21/2020] [Indexed: 01/04/2023]
Abstract
In the eye, the function of same-type photoreceptors must be regionally adjusted to process a highly asymmetrical natural visual world. Here, we show that UV cones in the larval zebrafish area temporalis are specifically tuned for UV-bright prey capture in their upper frontal visual field, which may use the signal from a single cone at a time. For this, UV-photon detection probability is regionally boosted more than 10-fold. Next, in vivo two-photon imaging, transcriptomics, and computational modeling reveal that these cones use an elevated baseline of synaptic calcium to facilitate the encoding of bright objects, which in turn results from expressional tuning of phototransduction genes. Moreover, the light-driven synaptic calcium signal is regionally slowed by interactions with horizontal cells and later accentuated at the level of glutamate release driving retinal networks. These regional differences tally with variations between peripheral and foveal cones in primates and hint at a common mechanistic origin.
Collapse
Affiliation(s)
| | - Cornelius Schröder
- Institute of Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany
| | - Noora E Nevala
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Philipp Berens
- Institute of Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen 72076, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK; Institute of Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany.
| |
Collapse
|
32
|
Meschede IP, Ovenden NC, Seabra MC, Futter CE, Votruba M, Cheetham ME, Burgoyne T. Symmetric arrangement of mitochondria:plasma membrane contacts between adjacent photoreceptor cells regulated by Opa1. Proc Natl Acad Sci U S A 2020; 117:15684-15693. [PMID: 32571921 PMCID: PMC7355040 DOI: 10.1073/pnas.2000304117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mitochondria are known to play an essential role in photoreceptor function and survival that enables normal vision. Within photoreceptors, mitochondria are elongated and extend most of the inner-segment length, where they supply energy for protein synthesis and the phototransduction machinery in the outer segment, as well as acting as a calcium store. Here, we examined the arrangement of the mitochondria within the inner segment in detail using three-dimensional (3D) electron microscopy techniques and show they are tethered to the plasma membrane in a highly specialized arrangement. Remarkably, mitochondria and their cristae openings align with those of neighboring inner segments. The pathway by which photoreceptors meet their high energy demands is not fully understood. We propose this to be a mechanism to share metabolites and assist in maintaining homeostasis across the photoreceptor cell layer. In the extracellular space between photoreceptors, Müller glial processes were identified. Due to the often close proximity to the inner-segment mitochondria, they may, too, play a role in the inner-segment mitochondrial arrangement as well as metabolite shuttling. OPA1 is an important factor in mitochondrial homeostasis, including cristae remodeling; therefore, we examined the photoreceptors of a heterozygous Opa1 knockout mouse model. The cristae structure in the Opa1+/- photoreceptors was not greatly affected, but the mitochondria were enlarged and had reduced alignment to neighboring inner-segment mitochondria. This indicates the importance of key regulators in maintaining this specialized photoreceptor mitochondrial arrangement.
Collapse
Affiliation(s)
- Ingrid P Meschede
- UCL Institute of Ophthalmology, University College London, EC1V 9EL London, United Kingdom
| | - Nicholas C Ovenden
- Department of Mathematics, University College London, WC1E 6BT London, United Kingdom
| | - Miguel C Seabra
- UCL Institute of Ophthalmology, University College London, EC1V 9EL London, United Kingdom
- Centro de Estudos de Doenças Crónicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Clare E Futter
- UCL Institute of Ophthalmology, University College London, EC1V 9EL London, United Kingdom
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, CF24 4HQ Cardiff, United Kingdom
- Cardiff Eye Unit, University Hospital Wales, CF14 4XW Cardiff, United Kingdom
| | - Michael E Cheetham
- UCL Institute of Ophthalmology, University College London, EC1V 9EL London, United Kingdom
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, EC1V 9EL London, United Kingdom;
| |
Collapse
|
33
|
Mechaussier S, Almoallem B, Zeitz C, Van Schil K, Jeddawi L, Van Dorpe J, Dueñas Rey A, Condroyer C, Pelle O, Polak M, Boddaert N, Bahi-Buisson N, Cavallin M, Bacquet JL, Mouallem-Bézière A, Zambrowski O, Sahel JA, Audo I, Kaplan J, Rozet JM, De Baere E, Perrault I. Loss of Function of RIMS2 Causes a Syndromic Congenital Cone-Rod Synaptic Disease with Neurodevelopmental and Pancreatic Involvement. Am J Hum Genet 2020; 106:859-871. [PMID: 32470375 PMCID: PMC7273530 DOI: 10.1016/j.ajhg.2020.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Congenital cone-rod synaptic disorder (CRSD), also known as incomplete congenital stationary night blindness (iCSNB), is a non-progressive inherited retinal disease (IRD) characterized by night blindness, photophobia, and nystagmus, and distinctive electroretinographic features. Here, we report bi-allelic RIMS2 variants in seven CRSD-affected individuals from four unrelated families. Apart from CRSD, neurodevelopmental disease was observed in all affected individuals, and abnormal glucose homeostasis was observed in the eldest affected individual. RIMS2 regulates synaptic membrane exocytosis. Data mining of human adult bulk and single-cell retinal transcriptional datasets revealed predominant expression in rod photoreceptors, and immunostaining demonstrated RIMS2 localization in the human retinal outer plexiform layer, Purkinje cells, and pancreatic islets. Additionally, nonsense variants were shown to result in truncated RIMS2 and decreased insulin secretion in mammalian cells. The identification of a syndromic stationary congenital IRD has a major impact on the differential diagnosis of syndromic congenital IRD, which has previously been exclusively linked with degenerative IRD.
Collapse
Affiliation(s)
- Sabrina Mechaussier
- Laboratory of Genetics in Ophthalmology, INSERM UMR 1163, Institute of Genetic Diseases, Imagine and Paris University, 75015 Paris, France
| | - Basamat Almoallem
- Center for Medical Genetics and Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium; Department of Ophthalmology, King Abdul-Aziz University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Christina Zeitz
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique, Institut de la Vision, 75012 Paris, France
| | - Kristof Van Schil
- Center for Medical Genetics and Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | - Laila Jeddawi
- Pediatric Ophthalmology Division, Dhahran Eye Specialist Hospital, Dhahran 34257, Saudi Arabia
| | - Jo Van Dorpe
- Department of Pathology, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | - Alfredo Dueñas Rey
- Center for Medical Genetics and Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | - Christel Condroyer
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique, Institut de la Vision, 75012 Paris, France
| | - Olivier Pelle
- Cell Sorting Facility, INSERM UMR 1163, Institute of Genetic Diseases, Imagine and Paris University, 75015 Paris, France
| | - Michel Polak
- Endocrinology, Gynecology, and Pediatric Diabetology Department, University Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, University Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Nadia Bahi-Buisson
- Pediatric Neurology Department, University Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Mara Cavallin
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institute of Genetic Diseases, Imagine and Paris University, 75015 Paris, France
| | - Jean-Louis Bacquet
- Service d'Ophtalmologie, Centre Hospitalier Intercommunal de Créteil, Assistance Publique-Hôpitaux de Paris, 94000 Créteil, France
| | - Alexandra Mouallem-Bézière
- Service d'Ophtalmologie, Centre Hospitalier Intercommunal de Créteil, Assistance Publique-Hôpitaux de Paris, 94000 Créteil, France
| | - Olivia Zambrowski
- Service d'Ophtalmologie, Centre Hospitalier Intercommunal de Créteil, Assistance Publique-Hôpitaux de Paris, 94000 Créteil, France; Ophthalmology Department, University Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - José Alain Sahel
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique, Institut de la Vision, 75012 Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM, Direction de l'Hospitalisation et de l'Organisation des Soins (DHOS), Centres d'Investigations Cliniques (CIC) 1423, 75012 Paris, France; Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France; Académie des Sciences, Institut de France, 75006 Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Isabelle Audo
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique, Institut de la Vision, 75012 Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM, Direction de l'Hospitalisation et de l'Organisation des Soins (DHOS), Centres d'Investigations Cliniques (CIC) 1423, 75012 Paris, France; Institute of Ophthalmology, University College of London, London EC1V 9EL, UK
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology, INSERM UMR 1163, Institute of Genetic Diseases, Imagine and Paris University, 75015 Paris, France; Service d'Ophtalmologie, Centre Hospitalier Intercommunal de Créteil, Assistance Publique-Hôpitaux de Paris, 94000 Créteil, France
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology, INSERM UMR 1163, Institute of Genetic Diseases, Imagine and Paris University, 75015 Paris, France
| | - Elfride De Baere
- Center for Medical Genetics and Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium.
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology, INSERM UMR 1163, Institute of Genetic Diseases, Imagine and Paris University, 75015 Paris, France.
| |
Collapse
|
34
|
Dembla E, Dembla M, Maxeiner S, Schmitz F. Synaptic ribbons foster active zone stability and illumination-dependent active zone enrichment of RIM2 and Cav1.4 in photoreceptor synapses. Sci Rep 2020; 10:5957. [PMID: 32249787 PMCID: PMC7136232 DOI: 10.1038/s41598-020-62734-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/18/2020] [Indexed: 02/08/2023] Open
Abstract
Rod photoreceptor synapses use large, ribbon-type active zones for continuous synaptic transmission during light and dark. Since ribbons are physically connected to the active zones, we asked whether illumination-dependent changes of ribbons influence Cav1.4/RIM2 protein clusters at the active zone and whether these illumination-dependent effects at the active zone require the presence of the synaptic ribbon. We found that synaptic ribbon length and the length of presynaptic Cav1.4/RIM2 clusters are tightly correlated. Dark-adaptation did not change the number of ribbons and active zone puncta. However, mean ribbon length and length of presynaptic Cav1.4/RIM2 clusters increased significantly during dark-adaptation when tonic exocytosis is highest. In the present study, we identified by the analyses of synaptic ribbon-deficient RIBEYE knockout mice that synaptic ribbons are (1) needed to stabilize Cav1.4/RIM2 at rod photoreceptor active zones and (2) are required for the darkness-induced active zone enrichment of Cav1.4/RIM2. These data propose a role of the ribbon in active zone stabilization and suggest a homeostatic function of the ribbon in illumination-dependent active zone remodeling.
Collapse
Affiliation(s)
- Ekta Dembla
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421, Homburg, Germany.
| | - Mayur Dembla
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421, Homburg, Germany
| | - Stephan Maxeiner
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421, Homburg, Germany
- Institute of Anatomy and Cell Biology, Saarland University, AG Krasteva-Christ, 66421, Homburg, Germany
| | - Frank Schmitz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421, Homburg, Germany.
| |
Collapse
|
35
|
Furukawa T, Ueno A, Omori Y. Molecular mechanisms underlying selective synapse formation of vertebrate retinal photoreceptor cells. Cell Mol Life Sci 2020; 77:1251-1266. [PMID: 31586239 PMCID: PMC11105113 DOI: 10.1007/s00018-019-03324-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
Abstract
In vertebrate central nervous systems (CNSs), highly diverse neurons are selectively connected via synapses, which are essential for building an intricate neural network. The vertebrate retina is part of the CNS and is comprised of a distinct laminar organization, which serves as a good model system to study developmental synapse formation mechanisms. In the retina outer plexiform layer, rods and cones, two types of photoreceptor cells, elaborate selective synaptic contacts with ON- and/or OFF-bipolar cell terminals as well as with horizontal cell terminals. In the mouse retina, three photoreceptor subtypes and at least 15 bipolar subtypes exist. Previous and recent studies have significantly progressed our understanding of how selective synapse formation, between specific subtypes of photoreceptor and bipolar cells, is designed at the molecular level. In the ON pathway, photoreceptor-derived secreted and transmembrane proteins directly interact in trans with the GRM6 (mGluR6) complex, which is localized to ON-bipolar cell dendritic terminals, leading to selective synapse formation. Here, we review our current understanding of the key factors and mechanisms underlying selective synapse formation of photoreceptor cells with bipolar and horizontal cells in the retina. In addition, we describe how defects/mutations of the molecules involved in photoreceptor synapse formation are associated with human retinal diseases and visual disorders.
Collapse
Affiliation(s)
- Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akiko Ueno
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
36
|
Sasaoka M, Ota T, Kageyama M. Rotenone-induced inner retinal degeneration via presynaptic activation of voltage-dependent sodium and L-type calcium channels in rats. Sci Rep 2020; 10:969. [PMID: 31969611 PMCID: PMC6976703 DOI: 10.1038/s41598-020-57638-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/31/2019] [Indexed: 01/11/2023] Open
Abstract
Rotenone, a mitochondrial complex I inhibitor, causes retinal degeneration via unknown mechanisms. To elucidate the molecular mechanisms of its action, we further characterized a rat model of rotenone-induced retinal degeneration. Intravitreal injection of rotenone (2 nmol/eye) damaged mainly the inner retinal layers, including cell loss in the ganglion cell and inner nuclear layers, which were very similar to those induced by 10 nmol/eye N-methyl-D-aspartate (NMDA). These morphological changes were accompanied by the reduced b-wave amplitude of electroretinogram, and increased immunostaining of 2,4-dinitrophenyl, an oxidative stress marker. Rotenone also downregulated expression of neurofilament light-chain gene (Nfl) as a retinal ganglion cell (RGC) marker. This effect was prevented by simultaneous injection of rotenone with antioxidants or NMDA receptor antagonists. More importantly, voltage-dependent sodium and L-type calcium channel blockers and intracellular calcium signaling modulators remarkably suppressed rotenone-induced Nfl downregulation, whereas none of these agents modified NMDA-induced Nfl downregulation. These results suggest that rotenone-induced inner retinal degeneration stems from indirect postsynaptic NMDA stimulation that is triggered by oxidative stress-mediated presynaptic intracellular calcium signaling via activation of voltage-dependent sodium and L-type calcium channels.
Collapse
Affiliation(s)
- Masaaki Sasaoka
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan
| | - Takashi Ota
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan
| | - Masaaki Kageyama
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan.
| |
Collapse
|
37
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
38
|
Artero Castro A, Rodríguez Jimenez FJ, Jendelova P, Erceg S. Deciphering retinal diseases through the generation of three dimensional stem cell-derived organoids: Concise Review. Stem Cells 2019; 37:1496-1504. [PMID: 31617949 PMCID: PMC6915910 DOI: 10.1002/stem.3089] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/08/2019] [Indexed: 01/09/2023]
Abstract
Three‐dimensional (3D) retinal organoids, in vitro tissue structures derived from self‐organizing cultures of differentiating human embryonic stem cells or induced pluripotent stem cells, could recapitulate some aspects of the cytoarchitectural structure and function of the retina in vivo. 3D retinal organoids display huge potential for the investigation of the pathogenesis of monogenic hereditary eye diseases that are related to the malfunction or degeneration of photoreceptors or retinal ganglion cells by providing an effective in vitro tool with multiple applications. In combination with recent genome editing tools, 3D retinal organoids could also represent a reliable and renewable source of transplantable cells for personalized therapies. In this review, we describe the recent advances in human pluripotent stem cells‐derived retinal organoids, determination of their histoarchitecture, complexity, and maturity. We also discuss their application as a means to decipher the pathogenesis of retinal diseases, as well as the main drawbacks and challenges. stem cells2019;37:1496–1504
Collapse
Affiliation(s)
- Ana Artero Castro
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain
| | | | - Pavla Jendelova
- Department of Tissue Cultures and Stem Cells, Czech Academy of Science, Institute of Experimental Medicine, Prague, Czech Republic
| | - Slaven Erceg
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain.,Department of Tissue Cultures and Stem Cells, Czech Academy of Science, Institute of Experimental Medicine, Prague, Czech Republic.,National Stem Cell Bank-Valencia Node, Proteomics, Genotyping and Cell Line Platform, PRB3, ISCIII, Research Centre Principe Felipe, Valencia, Spain
| |
Collapse
|
39
|
Hays CL, Grassmeyer JJ, Wen X, Janz R, Heidelberger R, Thoreson WB. Simultaneous Release of Multiple Vesicles from Rods Involves Synaptic Ribbons and Syntaxin 3B. Biophys J 2019; 118:967-979. [PMID: 31653448 DOI: 10.1016/j.bpj.2019.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 02/05/2023] Open
Abstract
First proposed as a specialized mode of release at sensory neurons possessing ribbon synapses, multivesicular release has since been described throughout the central nervous system. Many aspects of multivesicular release remain poorly understood. We explored mechanisms underlying simultaneous multivesicular release at ribbon synapses in salamander retinal rod photoreceptors. We assessed spontaneous release presynaptically by recording glutamate transporter anion currents (IA(glu)) in rods. Spontaneous IA(glu) events were correlated in amplitude and kinetics with simultaneously measured miniature excitatory postsynaptic currents in horizontal cells. Both measures indicated that a significant fraction of events is multiquantal, with an analysis of IA(glu) revealing that multivesicular release constitutes ∼30% of spontaneous release events. IA(glu) charge transfer increased linearly with event amplitude showing that larger events involve greater glutamate release. The kinetics of large and small IA(glu) events were identical as were rise times of large and small miniature excitatory postsynaptic currents, indicating that the release of multiple vesicles during large events is highly synchronized. Effects of exogenous Ca2+ buffers suggested that multiquantal, but not uniquantal, release occurs preferentially near Ca2+ channels clustered beneath synaptic ribbons. Photoinactivation of ribbons reduced the frequency of spontaneous multiquantal events without affecting uniquantal release frequency, showing that spontaneous multiquantal release requires functional ribbons. Although both occur at ribbon-style active zones, the absence of cross-depletion indicates that evoked and spontaneous multiquantal release from ribbons involve different vesicle pools. Introducing an inhibitory peptide into rods to interfere with the SNARE protein, syntaxin 3B, selectively reduced multiquantal event frequency. These results support the hypothesis that simultaneous multiquantal release from rods arises from homotypic fusion among neighboring vesicles on ribbons and involves syntaxin 3B.
Collapse
Affiliation(s)
- Cassandra L Hays
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Justin J Grassmeyer
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Xiangyi Wen
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska; West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Roger Janz
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; The University of Texas MD Anderson Cancer Center University of Texas Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; The University of Texas MD Anderson Cancer Center University of Texas Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
40
|
Agostinone J, Alarcon-Martinez L, Gamlin C, Yu WQ, Wong ROL, Di Polo A. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain 2019; 141:1963-1980. [PMID: 29931057 PMCID: PMC6022605 DOI: 10.1093/brain/awy142] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/06/2018] [Indexed: 01/07/2023] Open
Abstract
Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- Jessica Agostinone
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| | - Clare Gamlin
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
41
|
RETINAL MICROVASCULATURE AND VISUAL ACUITY AFTER INTRAVITREAL AFLIBERCEPT IN EYES WITH CENTRAL RETINAL VEIN OCCLUSION: An Optical Coherence Tomography Angiography Study. Retina 2019; 38:2067-2072. [PMID: 28902097 DOI: 10.1097/iae.0000000000001828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate vascular perfusion and foveal avascular zone area in the superficial capillary plexus (SCP) and deep capillary plexus (DCP) after intravitreal aflibercept therapy in central retinal vein occlusion eyes and their association with best-corrected visual acuity. METHODS Thirty-five subjects with central retinal vein occlusion and macular edema were evaluated. After macular edema resolution following intravitreal aflibercept, subjects underwent optical coherence tomography angiography to measure SCP and DCP perfusion and the foveal avascular zone within a 3 × 3-mm area. Correlations between best-corrected visual acuity and optical coherence tomography angiography measurements were examined. RESULTS After intravitreal aflibercept therapy, mean retinal vascular area was 3.41 ± 0.74 mm in the SCP and 3.25 ± 0.91 mm in the DCP. Foveal avascular zone area was 1.03 ± 1.04 mm in the SCP and 1.78 ± 1.73 mm in the DCP. Improved best-corrected visual acuity was significantly associated with better SCP and DCP perfusion (both P < 0.001) and with smaller SCP and DCP foveal avascular zone areas (both P < 0.001). Additionally, SCP and DCP perfusion were negatively correlated with macular edema before treatment (P < 0.05) and ischemia (determined via pretreatment fluorescein angiography, P < 0.05), and positively correlated with photoreceptor integrity (P < 0.001). CONCLUSION Patients with better retinal perfusion and less retinal ischemia are associated with better visual outcomes after aflibercept in eyes with central retinal vein occlusion.
Collapse
|
42
|
Babai N, Gierke K, Müller T, Regus‐Leidig H, Brandstätter JH, Feigenspan A. Signal transmission at invaginating cone photoreceptor synaptic contacts following deletion of the presynaptic cytomatrix protein Bassoon in mouse retina. Acta Physiol (Oxf) 2019; 226:e13241. [PMID: 30554473 DOI: 10.1111/apha.13241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/17/2023]
Abstract
AIM A key feature of the mammalian retina is the segregation of visual information in parallel pathways, starting at the photoreceptor terminals. Cone photoreceptors establish synaptic contacts with On bipolar and horizontal cells at invaginating, ribbon-containing synaptic sites, whereas Off bipolar cells form flat, non-ribbon-containing contacts. The cytomatrix protein Bassoon anchors ribbons at the active zone, and its absence induces detachment of ribbons from the active zone. In this study we investigate the impact of a missing Bassoon on synaptic transmission at the first synapse of the visual system. METHODS Release properties of cone photoreceptors were studied in wild-type and mutant mouse retinae with a genetic disruption of the presynaptic cytomatrix protein Bassoon using whole-cell voltage-clamp recordings. Light and electron microscopy revealed the distribution of Ca2+ channels and synaptic vesicles, respectively, in both mouse lines. RESULTS Whole-cell recordings from postsynaptic horizontal cells of the two mouse lines showed that the presence of Bassoon (and a ribbon) enhanced the rate of exocytosis during tonic and evoked release by increasing synaptic vesicle pool size and replenishment rate, while at the same time slowing synaptic vesicle release. Furthermore, the number of Cav 1.4 channels and synaptic vesicles was significantly higher at wild-type than at Bassoon mutant synaptic sites. CONCLUSION The results of our study demonstrate that glutamate release from cone photoreceptor terminals can occur independent of a synaptic ribbon, but seems restricted to active zones, and they show the importance of a the synaptic ribbon in sustained and spatially and temporally synchronized neurotransmitter release.
Collapse
Affiliation(s)
- Norbert Babai
- Department of Biology, Animal Physiology FAU Erlangen‐Nürnberg Erlangen Germany
| | - Kaspar Gierke
- Department of Biology, Animal Physiology FAU Erlangen‐Nürnberg Erlangen Germany
| | - Tanja Müller
- Department of Biology, Animal Physiology FAU Erlangen‐Nürnberg Erlangen Germany
| | - Hanna Regus‐Leidig
- Department of Biology, Animal Physiology FAU Erlangen‐Nürnberg Erlangen Germany
| | | | - Andreas Feigenspan
- Department of Biology, Animal Physiology FAU Erlangen‐Nürnberg Erlangen Germany
| |
Collapse
|
43
|
Assawachananont J, Kim SY, Kaya KD, Fariss R, Roger JE, Swaroop A. Cone-rod homeobox CRX controls presynaptic active zone formation in photoreceptors of mammalian retina. Hum Mol Genet 2019; 27:3555-3567. [PMID: 30084954 DOI: 10.1093/hmg/ddy272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
In the mammalian retina, rod and cone photoreceptors transmit the visual information to bipolar neurons through highly specialized ribbon synapses. We have limited understanding of regulatory pathways that guide morphogenesis and organization of photoreceptor presynaptic architecture in the developing retina. While neural retina leucine zipper (NRL) transcription factor determines rod cell fate and function, cone-rod homeobox (CRX) controls the expression of both rod- and cone-specific genes and is critical for terminal differentiation of photoreceptors. A comprehensive immunohistochemical evaluation of Crx-/- (null), CrxRip/+ and CrxRip/Rip (models of dominant congenital blindness) mouse retinas revealed abnormal photoreceptor synapses, with atypical ribbon shape, number and length. Integrated analysis of retinal transcriptomes of Crx-mutants with CRX- and NRL-ChIP-Seq data identified a subset of differentially expressed CRX target genes that encode presynaptic proteins associated with the cytomatrix active zone (CAZ) and synaptic vesicles. Immunohistochemistry of Crx-mutant retina validated aberrant expression of REEP6, PSD95, MPP4, UNC119, UNC13, RGS7 and RGS11, with some reduction in Ribeye and no significant change in immunostaining of RIMS1, RIMS2, Bassoon and Pikachurin. Our studies demonstrate that CRX controls the establishment of CAZ and anchoring of ribbons, but not the formation of ribbon itself, in photoreceptor presynaptic terminals.
Collapse
Affiliation(s)
- Juthaporn Assawachananont
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soo-Young Kim
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Koray D Kaya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Fariss
- Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jerome E Roger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Centre d'Etude et de Recherches Thérapeutiques en Ophthalmologie, Retina France, Orsay, France.,Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Chakrabarti R, Wichmann C. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses. Int J Mol Sci 2019; 20:E2147. [PMID: 31052288 PMCID: PMC6539712 DOI: 10.3390/ijms20092147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
A critical aim in neuroscience is to obtain a comprehensive view of how regulated neurotransmission is achieved. Our current understanding of synapses relies mainly on data from electrophysiological recordings, imaging, and molecular biology. Based on these methodologies, proteins involved in a synaptic vesicle (SV) formation, mobility, and fusion at the active zone (AZ) membrane have been identified. In the last decade, electron tomography (ET) combined with a rapid freezing immobilization of neuronal samples opened a window for understanding the structural machinery with the highest spatial resolution in situ. ET provides significant insights into the molecular architecture of the AZ and the organelles within the presynaptic nerve terminal. The specialized sensory ribbon synapses exhibit a distinct architecture from neuronal synapses due to the presence of the electron-dense synaptic ribbon. However, both synapse types share the filamentous structures, also commonly termed as tethers that are proposed to contribute to different steps of SV recruitment and exocytosis. In this review, we discuss the emerging views on the role of filamentous structures in SV exocytosis gained from ultrastructural studies of excitatory, mainly central neuronal compared to ribbon-type synapses with a focus on inner hair cell (IHC) ribbon synapses. Moreover, we will speculate on the molecular entities that may be involved in filament formation and hence play a crucial role in the SV cycle.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
- Collaborative Research Center 1286 "Quantitative Synaptology", 37099 Göttingen, Germany.
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
45
|
Akiba R, Matsuyama T, Tu HY, Hashiguchi T, Sho J, Yamamoto S, Takahashi M, Mandai M. Quantitative and Qualitative Evaluation of Photoreceptor Synapses in Developing, Degenerating and Regenerating Retinas. Front Cell Neurosci 2019; 13:16. [PMID: 30804754 PMCID: PMC6378395 DOI: 10.3389/fncel.2019.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
Quantitative and qualitative evaluation of synapses is crucial to understand neural connectivity. This is particularly relevant now, in view of the recent advances in regenerative biology and medicine. There is an urgent need to evaluate synapses to access the extent and functionality of reconstructed neural network. Most of the currently used synapse evaluation methods provide only all-or-none assessments. However, very often synapses appear in a wide spectrum of transient states such as during synaptogenesis or neural degeneration. Robust evaluation of synapse quantity and quality is therefore highly sought after. In this paper we introduce QUANTOS, a new method that can evaluate the number, likelihood, and maturity of photoreceptor ribbon synapses based on graphical properties of immunohistochemistry images. QUANTOS is composed of ImageJ Fiji macros, and R scripts which are both open-source and free software. We used QUANTOS to evaluate synaptogenesis in developing and degenerating retinas, as well as de novo synaptogenesis of mouse iPSC-retinas after transplantation to a retinal degeneration mouse model. Our analysis shows that while mouse iPSC-retinas are largely incapable of forming synapses in vitro, they can form extensive synapses following transplantation. The de novo synapses detected after transplantation seem to be in an intermediate state between mature and immature compared to wildtype retina. Furthermore, using QUANTOS we tested whether environmental light can affect photoreceptor synaptogenesis. We found that the onset of synaptogenesis was earlier under cyclic light (LD) condition when compared to constant dark (DD), resulting in more synapses at earlier developmental stages. The effect of light was also supported by micro electroretinography showing larger responses under LD condition. The number of synapses was also increased after transplantation of mouse iPSC-retinas to rd1 mice under LD condition. Our new probabilistic assessment of synapses may prove to be a valuable tool to gain critical insights into neural-network reconstruction and help develop treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Ryutaro Akiba
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tomoyo Hashiguchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Junki Sho
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shuichi Yamamoto
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
46
|
Abdelkader E, AlHilali S, Neuhaus C, Bergmann C, AlMurshed T, Schatz P. Congenital stationary night blindness associated with morning glory disc malformation: a novel hemizygous mutation in CACNA1F. Ophthalmic Genet 2018; 39:659-661. [PMID: 30067413 DOI: 10.1080/13816810.2018.1498526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ehab Abdelkader
- a Vitreoretinal Division , King Khaled Eye Specialist Hospital , Riyadh , Saudi Arabia
| | - Sara AlHilali
- a Vitreoretinal Division , King Khaled Eye Specialist Hospital , Riyadh , Saudi Arabia
| | | | | | - Tahani AlMurshed
- a Vitreoretinal Division , King Khaled Eye Specialist Hospital , Riyadh , Saudi Arabia
| | - Patrik Schatz
- a Vitreoretinal Division , King Khaled Eye Specialist Hospital , Riyadh , Saudi Arabia
| |
Collapse
|
47
|
Vinberg F, Chen J, Kefalov VJ. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Prog Retin Eye Res 2018; 67:87-101. [PMID: 29883715 DOI: 10.1016/j.preteyeres.2018.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
Calcium plays important roles in the function and survival of rod and cone photoreceptor cells. Rapid regulation of calcium in the outer segments of photoreceptors is required for the modulation of phototransduction that drives the termination of the flash response as well as light adaptation in rods and cones. On a slower time scale, maintaining proper calcium homeostasis is critical for the health and survival of photoreceptors. Decades of work have established that the level of calcium in the outer segments of rods and cones is regulated by a dynamic equilibrium between influx via the transduction cGMP-gated channels and extrusion via rod- and cone-specific Na+/Ca2+, K+ exchangers (NCKXs). It had been widely accepted that the only mechanism for extrusion of calcium from rod outer segments is via the rod-specific NCKX1, while extrusion from cone outer segments is driven exclusively by the cone-specific NCKX2. However, recent evidence from mice lacking NCKX1 and NCKX2 have challenged that notion and have revealed a more complex picture, including a NCKX-independent mechanism in rods and two separate NCKX-dependent mechanisms in cones. This review will focus on recent findings on the molecular mechanisms of extrusion of calcium from the outer segments of rod and cone photoreceptors, and the functional and structural changes in photoreceptors when normal extrusion is disrupted.
Collapse
Affiliation(s)
- Frans Vinberg
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA; John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Vladimir J Kefalov
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
48
|
Verasztó C, Gühmann M, Jia H, Rajan VBV, Bezares-Calderón LA, Piñeiro-Lopez C, Randel N, Shahidi R, Michiels NK, Yokoyama S, Tessmar-Raible K, Jékely G. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. eLife 2018; 7:36440. [PMID: 29809157 PMCID: PMC6019069 DOI: 10.7554/elife.36440] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/28/2018] [Indexed: 02/02/2023] Open
Abstract
Ciliary and rhabdomeric photoreceptor cells represent two main lines of photoreceptor-cell evolution in animals. The two cell types coexist in some animals, however how these cells functionally integrate is unknown. We used connectomics to map synaptic paths between ciliary and rhabdomeric photoreceptors in the planktonic larva of the annelid Platynereis and found that ciliary photoreceptors are presynaptic to the rhabdomeric circuit. The behaviors mediated by the ciliary and rhabdomeric cells also interact hierarchically. The ciliary photoreceptors are UV-sensitive and mediate downward swimming in non-directional UV light, a behavior absent in ciliary-opsin knockout larvae. UV avoidance overrides positive phototaxis mediated by the rhabdomeric eyes such that vertical swimming direction is determined by the ratio of blue/UV light. Since this ratio increases with depth, Platynereis larvae may use it as a depth gauge during vertical migration. Our results revealed a functional integration of ciliary and rhabdomeric photoreceptor cells in a zooplankton larva.
Collapse
Affiliation(s)
- Csaba Verasztó
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Martin Gühmann
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Huiyong Jia
- Department of Biology, Emory University, Atlanta, United States
| | | | - Luis A Bezares-Calderón
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Nadine Randel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Réza Shahidi
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Nico K Michiels
- Department of Biology, University of Tübingen, Tübingen, Germany
| | - Shozo Yokoyama
- Department of Biology, Emory University, Atlanta, United States
| | | | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
49
|
Nelis P, Kleffner I, Burg MC, Clemens CR, Alnawaiseh M, Motte J, Marziniak M, Eter N, Alten F. OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients. Sci Rep 2018; 8:8148. [PMID: 29802397 PMCID: PMC5970147 DOI: 10.1038/s41598-018-26475-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/10/2018] [Indexed: 01/11/2023] Open
Abstract
Optical coherence tomography angiography (OCT-A) represents the most recent tool in ophthalmic imaging. It allows for a non-invasive, depth-selective and quantitative visualization of blood flow in central retinal vessels and it has an enormous diagnostic potential not only in ophthalmology but also with regards to neurologic and systemic diseases. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary vascular small-vessel disease caused by Notch3 mutations and represents the most common form of hereditary stroke disorder. In this study, CADASIL patients prospectively underwent OCT-A imaging to evaluate retinal and choriocapillaris blood flow as well as blood flow at the optic nerve head. The vessel density of the macular region and the size of the foveal avascular zone in the superficial and deep retinal plexus were determined as well as the vessel density at the optic nerve head and in the choriocapillaris. Additionally, cerebral magnetic resonance images were evaluated. The main finding was that vessel density of the deep retinal plexus was significantly decreased in CADASIL patients compared to healthy controls which may reflect pericyte dysfunction in retinal capillaries.
Collapse
Affiliation(s)
- Pieter Nelis
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| | - Ilka Kleffner
- Department of Neurology, University of Muenster Medical Center, Muenster, Germany
| | - Matthias C Burg
- Department of Clinical Radiology, University of Muenster Medical Center, Muenster, Germany
| | - Christoph R Clemens
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| | - Maged Alnawaiseh
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| | - Jeremias Motte
- Department of Neurology, Ruhr University Bochum, Bochum, Germany
| | - Martin Marziniak
- Department of Neurology, kbo-Isar-Amper-Klinikum München-Ost, Muenchen, Germany
| | - Nicole Eter
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| | - Florian Alten
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany.
| |
Collapse
|
50
|
Waldner DM, Bech-Hansen NT, Stell WK. Channeling Vision: Ca V1.4-A Critical Link in Retinal Signal Transmission. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7272630. [PMID: 29854783 PMCID: PMC5966690 DOI: 10.1155/2018/7272630] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 01/09/2023]
Abstract
Voltage-gated calcium channels (VGCC) are key to many biological functions. Entry of Ca2+ into cells is essential for initiating or modulating important processes such as secretion, cell motility, and gene transcription. In the retina and other neural tissues, one of the major roles of Ca2+-entry is to stimulate or regulate exocytosis of synaptic vesicles, without which synaptic transmission is impaired. This review will address the special properties of one L-type VGCC, CaV1.4, with particular emphasis on its role in transmission of visual signals from rod and cone photoreceptors (hereafter called "photoreceptors," to the exclusion of intrinsically photoreceptive retinal ganglion cells) to the second-order retinal neurons, and the pathological effects of mutations in the CACNA1F gene which codes for the pore-forming α1F subunit of CaV1.4.
Collapse
Affiliation(s)
- D. M. Waldner
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - N. T. Bech-Hansen
- Department of Medical Genetics and Department of Surgery, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - W. K. Stell
- Department of Cell Biology and Anatomy and Department of Surgery, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|