1
|
Zhang Z, Zhang L, Chen B. Characterization of T cells in the progression of dry eye disease using single-cell RNA sequencing in mice. Eur J Med Res 2025; 30:338. [PMID: 40296131 PMCID: PMC12036131 DOI: 10.1186/s40001-025-02607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Increasing evidence indicated that T cells have significant effects in dry eye disease (DED). However, the regulatory role of T cells in DED remains unclear. METHODS In this study, we examined immune responses throughout the progression in murine DED model. Using cytometry by time-of-flight (CyTOF) and single-cell RNA sequencing (scRNA-seq), we observed dynamic alterations in the proportions of immune cell landscape. Pseudotime trajectory and cell-cell communication analyses further illustrated T-cell differentiation and interaction networks. RESULTS CD4+ and CD8+ T cells exhibited an initial decline on Day 3 (D3) and followed by a recovery on Day 7 (D7). Single-cell transcriptomics provided insights into 15 distinct subsets of T cells with heterogeneous functional states. Pseudotime trajectory analysis demonstrated coordinated differentiation patterns of CD4+ and CD8+ T cells, indicating their collaborative involvement in the inflammatory process. CONCLUSIONS Our results clarify the dynamics of the adaptive immune response in DED and indicate that targeting T cells may serve as a promising immune-modulatory approach in the treatment of DED model.
Collapse
Affiliation(s)
- Zhizhi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Liwei Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Zahn I, Socher E, Bergua A, Schikorra T, Kleinsasser B, Garreis F, Schicht M, Dietrich J, Paulsen F. Alpha- and beta-melanocyte stimulating hormone positively impact lipogenesis of meibomian gland cells in vitro and ex vivo. Biomed Pharmacother 2025; 185:117937. [PMID: 40031375 DOI: 10.1016/j.biopha.2025.117937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
PURPOSE The meibomian glands produce a lipid-rich secretion that forms the superficial layer of the tear film, preventing excessive evaporation. Dysfunction of these glands (MGD) is the primary cause of dry eye disease (DED), a growing public health concern. Currently, there are limited pharmacological treatments for DED. However, α-/β-melanocyte-stimulating hormones (α-/β-MSH), ligands of the melanocortin receptors (MCR), are known to regulate lipogenesis and differentiation in sebaceous glands. This study investigated the influence of α-/β-MSH on exocrine secretion in human meibomian glands. METHODS Immunohistochemistry and RT-PCR for MCR expression were performed in human meibomian glands and an immortalized human meibomian gland epithelial cell line (ihMGECs). The effects of α-/β-MSH (agonists) and JNJ-10229570 (antagonist) in ihMGECs on lipid production and MCR response were analyzed using Oil-Red-O staining, transmission electron microscopy, qPCR, and a cAMP assay. Additionally, the effect of α-/β-MSH on an ex vivo organotypic slice culture (OSC) of human eyelids was investigated. RESULTS MCR expression was confirmed in human meibomian glands. Stimulation with α-/β-MSH increased cAMP levels and MCR expression. α-/β-MSH dose-dependently induced lipid production in ihMGECs and OSC, resulting in increased lipid droplet formation and upregulation of lipogenesis markers. Co-administration of JNJ-10229570 suppressed this effect. CONCLUSION Our data show for the first time that human meibomian glands express MCRs and that stimulation/inhibition of MCRs alters cAMP response, MCR expression, and lipogenesis markers, thereby affecting the genesis of meibum. Therefore, α-/β-MSH positively impacts meibum production and should be considered in the context of changes in glandular secretion in MGD and potential treatments.
Collapse
Affiliation(s)
- Ingrid Zahn
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Eileen Socher
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antonio Bergua
- Department of Ophthalmology, University of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thilo Schikorra
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benedikt Kleinsasser
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Garreis
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Dietrich
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Liu J, Guo Q, Liu G, Wang W, Jin X, Hao B, Lei B. Immune pathogenic response landscape of acute posterior multifocal placoid pigment epitheliopathy revealed by scRNA sequencing. Genes Immun 2025; 26:75-90. [PMID: 39774261 PMCID: PMC12006025 DOI: 10.1038/s41435-024-00316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Acute posterior multifocal placoid pigment epitheliopathy (APMPPE) is an exceptionally rare inflammatory disorder affecting choroid and retinal pigment epithelial (RPE) cells. Although recent studies suggest an immune-driven nature, the underlying etiology of APMPPE remains elusive. In this study, we conducted a comprehensive investigation on the peripheral blood mononuclear cells (PBMCs) profile of an APMPPE patient using single-cell RNA sequencing. Our analysis revealed striking transcriptional alterations in monocytes within the PBMCs, identifying five distinct subpopulations: S100A12, CD16, pro-inflammatory, megakaryocyte-like, and NK-like monocyte subsets. Employing pseudotime inference, we observed a shift in APMPPE monocytes towards differentiation into inflammation-associated pro-inflammatory monocytes and a CD16 monocyte trajectory. Furthermore, we identified IFITM3 as a key player in the immune response driving the pathogenesis of APMPPE. Notably, two disease-relevant subgroups of monocytes, pro-inflammatory and CD16 monocytes, were implicated in APMPPE. CD16 monocytes, in particular, were involved in melanogenesis, suggesting that the abnormal expression of melanin in monocytes might result from autoimmune responses against pigment-enriched RPE cells. This study provided a comprehensive view of immune landscape in APMPPE, shedding light on the previously unrecognized contributions of pro-inflammatory and CD16 monocytes to this autoimmune condition.
Collapse
Affiliation(s)
- Jingyang Liu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Qingge Guo
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Guangming Liu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Weiping Wang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Xiuxiu Jin
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
| | - Bingtao Hao
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, Henan, China.
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Weiqin L, Qi W, Lin J, Shuxia C, Chang L. Unveiling the role of ACTL6A in uveal melanoma metastasis and immune microenvironment. Int Immunopharmacol 2025; 147:113841. [PMID: 39746274 DOI: 10.1016/j.intimp.2024.113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE To predict and evaluate the possible mechanisms and clinical value of ACTL6A in the prognosis and development of UM. METHODS Bioinformatics analyze the relationship between ACTL6A and immunity in UM, which derived from TCGA, Gene Expression Omnibus (GEO) databases. Tumor-infltrated immune cells were demonstrated using QUANTISEQ and MCP-counter. Furthermore, scRNA-seq was used to detect ACTL6A expression, distribution, immune infiltration and revealing the gene expression profile of UM. RESULTS The expression of ACTL6A was lower in UM compared with pantumor in TCGA databases. Kaplan-Meier analysis revealed that downregulated ACTL6A was associated with poor OS, and ACTL6A was associated with cancer stem cells (CSCs) and immune infiltration. Moreover, ACTL6A might act as a chemotherapy resistance gene and closely relate- to epithelial-mesenchymal transition. Analysis in 8 GSE databases showed that IL13, TPTE, IL17B and CCL22 genes were significantly overexpressed in metastatic UM. Furthermore, the single-cell transcriptomic profling identified a new cell cluster - as a unique type of immune cell, which associating with malignant cell heterogeneity and complexity, and further revealing that the metastasis of UM is mainly associated with CD4 Tconv, B , CD8 Tex, and Plasma cells. CONCLUSIONS Downregulated ACTL6A acts as a risk factor for poor prognosis in UM, which implies as an potential prognostic marker for independent targeted immunotherapy.
Collapse
Affiliation(s)
- Liu Weiqin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Wan Qi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Jin Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; The First Affiliated Hospital of Shandong First Medical University, jinan 250014, China
| | - Chen Shuxia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; The First Affiliated Hospital of Shandong First Medical University, jinan 250014, China; Pathology Department, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Liu Chang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
5
|
Abu SL, Hehar NK, Chigbu DI. Novel therapeutic receptor agonists and antagonists in allergic conjunctivitis. Curr Opin Allergy Clin Immunol 2024; 24:380-389. [PMID: 39079155 DOI: 10.1097/aci.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
PURPOSE OF REVIEW Allergic conjunctivitis is characterized by the development of pathophysiological changes to the ocular surface, which occurs when pro-allergic and pro-inflammatory mediators interact with their cognate receptors expressed on immune and nonimmune cells. Traditional treatments with antihistamines and corticosteroids provide relief, but there is a need for more efficacious and tolerable long-term therapy with a better safety profile. This article aims to provide an overview of the mode of action and clinical application of agonist therapies targeting glucocorticoid, melanocortin, and toll-like receptors, as well as antagonist therapies targeting cytokine, chemokine, integrin, and histamine receptors. RECENT FINDINGS There has been considerable advancement in immunology and pharmacology, as well as a greater understanding of the cellular and molecular mechanisms of allergic conjunctivitis. Recent research advancing therapy for allergic conjunctivitis has focused on developing synthetic molecules and biologics that can interfere with the process of the allergic immune reaction. SUMMARY This review discusses novel therapeutic receptors being explored agonistically or antagonistically to develop alternative treatment options for allergic conjunctivitis. These novel approaches hold promise for improving the management of allergic eye diseases, offering patients hope for more effective and safer treatment options in the future.
Collapse
Affiliation(s)
- Sampson L Abu
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, USA
| | | | | |
Collapse
|
6
|
Kahale F, Alemi H, Naderi A, Deshpande N, Lee S, Wang S, Singh RB, Dohlman T, Yin J, Jurkunas U, Dana R. Neuropeptide alpha-Melanocyte stimulating hormone preserves corneal endothelial morphology in a murine model of Fuchs dystrophy. Sci Rep 2024; 14:18842. [PMID: 39138334 PMCID: PMC11322312 DOI: 10.1038/s41598-024-69416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Fuchs endothelial corneal dystrophy is a heterogenous disease with multifactorial etiology, and genetic, epigenetic, and exogenous factors contributing to its pathogenesis. DNA damage plays a significant role, with ultraviolet-A (UV-A) emerging as a key contributing factor. We investigate the potential application of neuropeptide α-melanocyte stimulating hormone (α-MSH) in mitigating oxidative stress induced endothelial damage. First, we examined the effects of α-MSH on a cultured human corneal endothelial cell line (HCEnC-21T) exposed to hydrogen peroxide (H2O2) induced oxidative DNA damage. We performed immunofluorescence and flow cytometry to assess DNA damage and cell death in the cultured cells. Additionally, we used an established mouse model that utilizes ultraviolet light to induce corneal endothelial cell damage resulting in decreased CEnC number, increased cell size variability, and decreased percentage of hexagonal cells. This endothelial decompensation leads to an increase in corneal thickness. Following UV-A exposure, the mice were systemically treated with α-MSH, either immediately after exposure (early treatment) or beginning two weeks post-exposure (delayed treatment). To evaluate treatment efficacy, we analyzed CEnC density and morphology using in vivo confocal microscopy, and central corneal thickness using anterior segment optical coherence tomography. Our findings demonstrated that α-MSH treatment effectively protects HCEnC-21T from free-radical induced oxidative DNA damage and subsequent cell death. In vivo, α-MSH treatment, mitigated the loss of CEnC density, deterioration of cell morphology and suppression of the resultant corneal swelling. These results underline the potential application of α-MSH as a therapeutic agent for mitigating corneal endothelial damage.
Collapse
Affiliation(s)
- Francesca Kahale
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Hamid Alemi
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Amirreza Naderi
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Neha Deshpande
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Seokjoo Lee
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Shudan Wang
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Rohan Bir Singh
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Thomas Dohlman
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Jia Yin
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Ula Jurkunas
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA.
| |
Collapse
|
7
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Tang S, Zhang Y, Huang S, Zhu T, Huang X. Single cell RNA-sequencing in uveal melanoma: advances in heterogeneity, tumor microenvironment and immunotherapy. Front Immunol 2024; 15:1427348. [PMID: 38966635 PMCID: PMC11222395 DOI: 10.3389/fimmu.2024.1427348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Uveal melanoma (UM) is a highly aggressive and fatal tumor in the eye, and due the special biology of UM, immunotherapy showed little effect in UM patients. To improve the efficacy of immunotherapy for UM patients is of great clinical importance. Single-cell RNA sequencing(scRNA-seq) provides a critical perspective for deciphering the complexity of intratumor heterogeneity and tumor microenvironment(TME). Combing the bioinformatics analysis, scRNA-seq could help to find prognosis-related molecular indicators, develop new therapeutic targets especially for immunotherapy, and finally to guide the clinical treatment options.
Collapse
Affiliation(s)
- Shiyi Tang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Yun Zhang
- Department of Ophthalmology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shengmei Huang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Tengfei Zhu
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaojing Huang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| |
Collapse
|
9
|
Ng TF, Cho JY, Zhao JL, Gardiner JR, Wang ES, Leung E, Xu Z, Fineman SL, Lituchy M, Lo AC, Taylor AW. Alpha-Melanocyte-Stimulating Hormone Maintains Retinal Homeostasis after Ischemia/Reperfusion. Biomolecules 2024; 14:525. [PMID: 38785932 PMCID: PMC11118772 DOI: 10.3390/biom14050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Augmenting the natural melanocortin pathway in mouse eyes with uveitis or diabetes protects the retinas from degeneration. The retinal cells are protected from oxidative and apoptotic signals of death. Therefore, we investigated the effects of a therapeutic application of the melanocortin alpha-melanocyte-stimulating hormone (α-MSH) on an ischemia and reperfusion (I/R) model of retinal degenerative disease. Eyes were subjected to an I/R procedure and were treated with α-MSH. Retinal sections were histopathologically scored. Also, the retinal sections were immunostained for viable ganglion cells, activated Muller cells, microglial cells, and apoptosis. The I/R caused retinal deformation and ganglion cell loss that was significantly reduced in I/R eyes treated with α-MSH. While α-MSH treatment marginally reduced the number of GFAP-positive Muller cells, it significantly suppressed the density of Iba1-positive microglial cells in the I/R retinas. Within one hour after I/R, there was apoptosis in the ganglion cell layer, and by 48 h, there was apoptosis in all layers of the neuroretina. The α-MSH treatment significantly reduced and delayed the onset of apoptosis in the retinas of I/R eyes. The results demonstrate that therapeutically augmenting the melanocortin pathways preserves retinal structure and cell survival in eyes with progressive neuroretinal degenerative disease.
Collapse
Affiliation(s)
- Tat Fong Ng
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Jenna Y. Cho
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - John L. Zhao
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - John R. Gardiner
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Eric S. Wang
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Elman Leung
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Ziqian Xu
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Samantha L. Fineman
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Melinda Lituchy
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Amy C. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Andrew W. Taylor
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| |
Collapse
|
10
|
Li D, Wan X, Yun Y, Li Y, Duan W. Genes Selectively Expressed in Rat Organs. Curr Genomics 2024; 25:261-297. [PMID: 39156728 PMCID: PMC11327808 DOI: 10.2174/0113892029273121240401060228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 08/20/2024] Open
Abstract
Background Understanding organic functions at a molecular level is important for scientists to unveil the disease mechanism and to develop diagnostic or therapeutic methods. Aims The present study tried to find genes selectively expressed in 11 rat organs, including the adrenal gland, brain, colon, duodenum, heart, ileum, kidney, liver, lung, spleen, and stomach. Materials and Methods Three normal male Sprague-Dawley (SD) rats were anesthetized, their organs mentioned above were harvested, and RNA in the fresh organs was extracted. Purified RNA was reversely transcribed and sequenced using the Solexa high-throughput sequencing technique. The abundance of a gene was measured by the expected value of fragments per kilobase of transcript sequence per million base pairs sequenced (FPKM). Genes in organs with the highest expression level were sought out and compared with their median value in organs. If a gene in the highest expressed organ was significantly different (p < 0.05) from that in the medianly expressed organ, accompanied by q value < 0.05, and accounted for more than 70% of the total abundance, the gene was assumed as the selective gene in the organ. Results & Discussion The Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) pathways were enriched by the highest expressed genes. Based on the criterion, 1,406 selective genes were screened out, 1,283 of which were described in the gene bank and 123 of which were waiting to be described. KEGG and GO pathways in the organs were partly confirmed by the known understandings and a good portion of the pathways needed further investigation. Conclusion The novel selective genes and organic functional pathways are useful for scientists to unveil the mechanisms of the organs at the molecular level, and the selective genes' products are candidate disease markers for organs.
Collapse
Affiliation(s)
- Dan Li
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xulian Wan
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Yu Yun
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yongkun Li
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Weigang Duan
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
11
|
Li X, Wang G, Wang X, Li W, Li N, Liu X, Fan W, He S, Han Y, Su G, Cao Q, Yang P, Hou S. OR11H1 Missense Variant Confers the Susceptibility to Vogt-Koyanagi-Harada Disease by Mediating Gadd45g Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306563. [PMID: 38168905 PMCID: PMC10953539 DOI: 10.1002/advs.202306563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Vogt-Koyanagi-Harada (VKH) disease is a severe autoimmune disease. Herein, whole-exome sequencing (WES) study are performed on 2,573 controls and 229 VKH patients with follow-up next-generation sequencing (NGS) in a collection of 2,380 controls and 2,278 VKH patients. A rare c.188T>C (p Val63Ala) variant in the olfactory receptor 11H1 (OR11H1) gene is found to be significantly associated with VKH disease (rs71235604, Pcombined = 7.83 × 10-30 , odds ratio = 3.12). Functional study showes that OR11H1-A63 significantly increased inflammatory factors production and exacerbated barrier function damage. Further studies using RNA-sequencing find that OR11H1-A63 markedly increased growth arrest and DNA-damage-inducible gamma (GADD45G) expression. Moreover, OR11H1-A63 activates the MAPK and NF-κB pathways, and accelerates inflammatory cascades. In addition, inhibiting GADD45G alleviates inflammatory factor secretion, likely due to the regulatory effect of GADD45G on the MAPK and NF-κB pathways. Collectively, this study suggests that the OR11H1-A63 missense mutation may increase susceptibility to VKH disease in a GADD45G-dependent manner.
Collapse
Affiliation(s)
- Xingran Li
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Guoqing Wang
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Xiaotang Wang
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Wanqian Li
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Na Li
- Department of Laboratory MedicineBeijing Tongren Hospital, Capital Medical UniversityBeijing100005China
| | - Xianyang Liu
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Wei Fan
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Siyuan He
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Yue Han
- Beijing Novogene Bioinformatics Technology Co.,LtdBeijing100600China
| | - Guannan Su
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Qingfeng Cao
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Peizeng Yang
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Shengping Hou
- Chongqing Branch of National Clinical Research Center for Ocular Diseases; Chongqing Key Laboratory of Ophthalmology; Chongqing Eye InstituteThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Ophthalmology & Visual Sciences Key LaboratoryBeijing Tongren HospitalCapital Medical UniversityBeijing100730China
| |
Collapse
|
12
|
Evans D, Kenyon K, Ousler G, Watson M, Vollmer P, McLaurin EB, Torkildsen G, Winters J, Dodd J, Jordan R, Wills ST, Spana C. Efficacy and Safety of the Melanocortin Pan-Agonist PL9643 in a Phase 2 Study of Patients with Dry Eye Disease. J Ocul Pharmacol Ther 2023; 39:600-610. [PMID: 37677000 PMCID: PMC10654643 DOI: 10.1089/jop.2023.0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/13/2023] [Indexed: 09/09/2023] Open
Abstract
Purpose: The melanocortin receptor pan-agonist PL9643, a potential therapy for ocular diseases, was investigated in a phase 2, 12-week study in patients with dry eye disease (DED). Methods: This was a placebo-controlled study evaluating efficacy and safety of thrice-daily PL9643. Placebo (vehicle) was similar to tears. Primary endpoints were intra-patient changes in inferior corneal fluorescein staining and ocular discomfort after 12 weeks. Secondary endpoints were changes in additional DED signs or symptoms. Multiple secondary endpoints were not adjusted for multiplicity. Patients with moderate or severe DED were analyzed in addition to the overall intent-to-treat (ITT) population. Results: In the ITT population (n = 160) the PL9643 group did not demonstrate significant treatment difference versus placebo at week 12/day 85 for the primary endpoints (P > 0.05). In patients with moderate or severe DED (n = 53), PL9643 treatment demonstrated either nominally significant (P < 0.05) or trending (P < 0.1) improvement over placebo in mean change from baseline at week 12/day 85 in several sign endpoints, including fluorescein staining in inferior, superior, corneal sum, and total sum regions; Lissamine Green staining in temporal, nasal, conjunctival sum, and total sum regions; and tear film breakup time. Conjunctival redness also showed (nonsignificant) improvement at week 12/day 85. There were no drug-related adverse events (AEs) and no drug-related discontinuations. Conclusions: PL9643 showed no significant efficacy for the ITT population; however, efficacy results across several signs and symptoms in the subpopulation of moderate to severe DED patients, the low number of ocular AEs, and no tolerability issues suggest that PL9643 shows promise as a therapeutic for DED. Clinical Trial Registration number: NCT04268069.
Collapse
Affiliation(s)
| | - Kenneth Kenyon
- Tufts University School of Medicine and New England Eye Center, Boston, Massachusetts, USA
| | | | | | | | | | | | - Jason Winters
- Palatin Technologies, Inc., Cranbury, New Jersey, USA
| | - John Dodd
- Palatin Technologies, Inc., Cranbury, New Jersey, USA
| | - Robert Jordan
- Palatin Technologies, Inc., Cranbury, New Jersey, USA
| | | | - Carl Spana
- Palatin Technologies, Inc., Cranbury, New Jersey, USA
| |
Collapse
|