1
|
Zhang M, Zhang T, He Y, Cui H, Li H, Xu Z, Wang X, Liu Y, Li H, Zhao X, Cheng H, Xu J, Chen X, Ding Z. Immunogenicity and protective efficacy of OmpA subunit vaccine against Aeromonas hydrophila infection in Megalobrama amblycephala: An effective alternative to the inactivated vaccine. Front Immunol 2023; 14:1133742. [PMID: 36969197 PMCID: PMC10034085 DOI: 10.3389/fimmu.2023.1133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Aeromonas hydrophila is a kind of zoonotic pathogen, which can cause bacterial septicemia in fish and bring huge economic losses to global aquaculture. Outer membrane proteins (Omps) are conserved antigens of Aeromonas hydrophila, which can be developed as subunit vaccines. To evaluate the protective efficacy of inactivated vaccine and recombinant outer membrane protein A (OmpA) subunit vaccine against A. hydrophila in juvenile Megalobrama amblycephala, the present study investigated the immunogenicity and protective effects of both vaccines, as well as the non-specific and specific immune response of M. amblycephala. Compared with the non-vaccinated group, both inactivated and OmpA subunit vaccines improved the survival rate of M. amblycephala upon infection. The protective effects of OmpA vaccine groups were better than that of the inactivated vaccine groups, which should be attributed to the reduced bacterial load and enhanced host immunity in the vaccinated fish. ELISA assay showed that the titer of serum immunoglobulin M (IgM) specific to A. hydrophila up-regulated significantly in the OmpA subunit vaccine groups at 14 d post infection (dpi), which should contribute to better immune protective effects. In addition, vaccination enhanced host bactericidal abilities might also attribute to the regulation of the activities of hepatic and serum antimicrobial enzymes. Moreover, the expression of immune-related genes (SAA, iNOS, IL-1 β, IL-6, IL-10, TNF α, C3, MHC I, MHC II, CD4, CD8, TCR α, IgM, IgD and IgZ) increased in all groups post infection, which was more significant in the vaccinated groups. Furthermore, the number of immunopositive cells exhibiting different epitopes (CD8, IgM, IgD and IgZ) that were detected by immunohistochemical assay had increased in the vaccinated groups post infection. These results show that vaccination effectively stimulated host immune response (especially OmpA vaccine groups). In conclusion, these results indicated that both the inactivated vaccine and OmpA subunit vaccine could protect juvenile M. amblycephala against A. hydrophila infection, of which OmpA subunit vaccine provided more effective immune protection and can be used as an ideal candidate for the A. hydrophila vaccine.
Collapse
Affiliation(s)
- Minying Zhang
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Ting Zhang
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Hujun Cui
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Lianyungang, China
| | - Hong Li
- Hunan Fisheries Science Institute, Changsha, China
| | - Zehua Xu
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xu Wang
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yunlong Liu
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Hongping Li
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiaoheng Zhao
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Lianyungang, China
| | - Hanliang Cheng
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Lianyungang, China
| | - Jianhe Xu
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Lianyungang, China
| | - Xiangning Chen
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Lianyungang, China
| | - Zhujin Ding
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Lianyungang, China
| |
Collapse
|
2
|
Li J, Ma S, Li Z, Yu W, Zhou P, Ye X, Islam MS, Zhang YA, Zhou Y, Li J. Construction and Characterization of an Aeromonas hydrophila Multi-Gene Deletion Strain and Evaluation of Its Potential as a Live-Attenuated Vaccine in Grass Carp. Vaccines (Basel) 2021; 9:vaccines9050451. [PMID: 34063680 PMCID: PMC8147641 DOI: 10.3390/vaccines9050451] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Aeromonas hydrophila is an important pathogen that causes motile Aeromonas septicemia (MAS) in the aquaculture industry. Aerolysin, hemolysin, serine protease and enterotoxins are considered to be the major virulence factors of A. hydrophila. In this study, we constructed a five-gene (aerA, hly, ahp, alt and ast) deletion mutant strain (named Aeromonas hydrophila five-gene deletion strain, AHFGDS) to observe the biological characteristics and detect its potential as a live-attenuated vaccine candidate. AHFGDS displayed highly attenuated and showed increased susceptibility to fish blood and skin mucus killing, while the wild-type strain ZYAH72 was highly virulent. In zebrafish (Danio rerio), AHFGDS showed a 240-fold higher 50% lethal dose (LD50) than that of the wild-type strain. Immunization with AHFGDS by intracelomic injection or immersion routes both provided grass carp (Ctenopharyngodon idella) significant protection against the challenge of the strain ZYAH72 or J-1 and protected the fish organs from serious injury. Further agglutinating antibody titer test supported that AHFGDS could elicit a host-adaptive immune response. These results suggested the potential of AHFGDS to serve as a live-attenuated vaccine to control A. hydrophila infection in aquaculture.
Collapse
Affiliation(s)
- Jihong Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.M.); (W.Y.); (P.Z.); (X.Y.); (Y.-A.Z.)
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Shilin Ma
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.M.); (W.Y.); (P.Z.); (X.Y.); (Y.-A.Z.)
| | - Zhi Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (M.S.I.); (J.L.)
| | - Wei Yu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.M.); (W.Y.); (P.Z.); (X.Y.); (Y.-A.Z.)
| | - Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.M.); (W.Y.); (P.Z.); (X.Y.); (Y.-A.Z.)
| | - Xiang Ye
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.M.); (W.Y.); (P.Z.); (X.Y.); (Y.-A.Z.)
| | - Md. Sharifull Islam
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (M.S.I.); (J.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.M.); (W.Y.); (P.Z.); (X.Y.); (Y.-A.Z.)
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Yang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.M.); (W.Y.); (P.Z.); (X.Y.); (Y.-A.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87282113; Fax: +86-27-87282114
| | - Jinquan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (M.S.I.); (J.L.)
| |
Collapse
|
3
|
Vaz Farias TH, Arijo S, Medina A, Pala G, da Rosa Prado EJ, Montassier HJ, Pilarski F, Antonio de Andrade Belo M. Immune responses induced by inactivated vaccine against Aeromonas hydrophila in pacu, Piaractus mesopotamicus. FISH & SHELLFISH IMMUNOLOGY 2020; 101:186-191. [PMID: 32247044 DOI: 10.1016/j.fsi.2020.03.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Aeromonas hydrophila is responsible for outbreaks of a severe infectious disease in fish farms around the world and is one of the major causes of economic losses to the neotropical fish farmers. This study assessed the induction of immune responses and protection against A. hydrophila in pacu, Piaractus mesopotamicus, vaccinated through intraperitoneal and immersion route with inactivated virulent strain. Fish were randomly distributed in three vaccinated groups: intraperitoneal (i.p.) route; immersion; and immersion + booster; and control group (unvaccinated). All vaccination protocols used the concentration of 1.7 × 108 CFU mL-1 of inactivated A. hydrophila., and an oil adjuvant was used for vaccine prepararion for i.p. route vaccination. Blood and skin mucus from 9 fishes per treatment were collected at 14, 28, 42 and 84 days post-vaccination (DPV) for determination of lysozyme concentration in skin mucus, as well as antibodies anti-A. hydrophila in blood serum and skin mucus. Fish were challenged at 84 DPV with homologous and virulent strain of A. hydrophila for evaluation of resistance against bacterial infection. The results demonstrated that vaccination with inactivated A. hydrophila suspension by i.p. or immersion resulted in significant increase of skin mucus lysozyme and specific antibody levels in serum and skin mucus, at 28 and 42 DPV, and this increase in innate and adaptive immunity remained significant in pacu vaccinated through i.p. route up to 84 DPV. Although no significant differences were observed in the survival study, pacu vaccinated through i.p. route presented 31,33% of relative percentage survival (RPS) in LD50-96h when compared unvaccinated fish challenged at 84 DPV. The results observed in this study indicate that vaccination programs with inactivated A. hydrophila, including booster doses by i.p. or immersion routes, could result in more effective protection in pacu against this bacteriosis, by increasing innate and adaptive mucosal and systemic immune responses.
Collapse
Affiliation(s)
- Thais Heloisa Vaz Farias
- Laboratory of Aquatic Organisms Pathology (Lapoa), Aquaculture Center from UNESP (CAUNESP), Rodovia de Acesso Paulo Donato Castellane s/n, CEP 14884-900, Jaboticabal, SP, Brazil
| | - Salvador Arijo
- Department of Microbiology, Faculty of Sciences, University of Malaga, 29071, Malaga, Spain
| | - Alberto Medina
- Department of Microbiology, Faculty of Sciences, University of Malaga, 29071, Malaga, Spain
| | - Gabriela Pala
- Department of Preventive Veterinary Medicine, São Paulo State University (Unesp), Rodovia de Acesso Paulo Donato Castellane s/n, Zona Rural, CEP 14884-012, Jaboticabal, SP, Brazil
| | - Ed Jhonny da Rosa Prado
- Department of Preventive Veterinary Medicine, São Paulo State University (Unesp), Rodovia de Acesso Paulo Donato Castellane s/n, Zona Rural, CEP 14884-012, Jaboticabal, SP, Brazil
| | - Hélio José Montassier
- Department of Microbiology, São Paulo State University (Unesp), Rodovia de Acesso Paulo Donato Castellane s/n, Zona Rural, CEP 14884-012, Jaboticabal, SP, Brazil
| | - Fabiana Pilarski
- Laboratory of Aquatic Organisms Pathology (Lapoa), Aquaculture Center from UNESP (CAUNESP), Rodovia de Acesso Paulo Donato Castellane s/n, CEP 14884-900, Jaboticabal, SP, Brazil
| | - Marco Antonio de Andrade Belo
- Department of Preventive Veterinary Medicine, São Paulo State University (Unesp), Rodovia de Acesso Paulo Donato Castellane s/n, Zona Rural, CEP 14884-012, Jaboticabal, SP, Brazil; Laboratory of Animal Pharmacology and Toxicology, Brazil University, Av. Hilário da Silva Passos, 950, CEP.13690-000, Descalvado, SP, Brazil.
| |
Collapse
|
4
|
Zhang Z, Liu G, Ma R, Qi X, Wang G, Zhu B, Ling F. The immunoprotective effect of whole-cell lysed inactivated vaccine with SWCNT as a carrier against Aeromonas hydrophila infection in grass carp. FISH & SHELLFISH IMMUNOLOGY 2020; 97:336-343. [PMID: 31874296 DOI: 10.1016/j.fsi.2019.12.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Aeromonas hydrophila is a strong gram-negative bacterium that can cause a mass death of grass carp, and result in the huge economic loss. Development of practical vaccines is the best way to control the outbreak of this bacterial disease. In this study, a whole-cell inactivated vaccine was obtained via sonication, and then single-walled carbon nanotubes (SWCNTs) was used to link to the bacterial lysate (BL) for a novel vaccine (SWCNTs-BL). A total of 400 fish were vaccinated with BL and SWCNTs-BL via immersion (5, 10 mg L-1) or injection (5, 10 μg/fish) before challenge with live A. hydrophila at the 28 days post immunization (d.p.i.). The results showed that the antibody titer, enzymatic activity, expression of some immune-related genes (especially IgM and TNF-α) and RPS of fish in the injection groups were significantly increased compared to the control group after 28 d.p.i. For the immersion groups, immunological parameters were increased compared to the control group. Furthermore, the immuno-protective effects of SWCNTs-BL were better than BL. The above results indicated that BL of A. hydrophila can effectively induce specific immune response of grass carp, and BL linked with functionalized SWCNTs could enhance the protective effect of immersion immunization. Our results may provide a practical vaccine, with a simple production, to fight against bacterial diseases in aquaculture industry.
Collapse
Affiliation(s)
- Zhongyu Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Gaoyang Liu
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Rui Ma
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Xiaozhou Qi
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Pang M, Xie X, Dong Y, Du H, Wang N, Lu C, Liu Y. Identification of novel virulence-related genes in Aeromonas hydrophila by screening transposon mutants in a Tetrahymena infection model. Vet Microbiol 2016; 199:36-46. [PMID: 28110783 DOI: 10.1016/j.vetmic.2016.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/24/2016] [Accepted: 12/17/2016] [Indexed: 11/24/2022]
Abstract
Outbreaks of motile Aeromonad septicemia (MAS) in fish caused by sequence type (ST) 251 Aeromonas hydrophila have become a prominent problem for the aquaculture industry. The pathogenesis of A. hydrophila is very complicated, and some virulence factors remain to be identified. In this study, to identify novel virulence-related factors, ST251 A. hydrophila strain NJ-35 was used as the parental strain to construct a mutant library comprising 1030 mutant strains by transposon insertion mutagenesis. Subsequently, 33 virulence-attenuated transposon insertion mutants were identified using Tetrahymena and zebrafish as model hosts in sequence. Thermal asymmetric interlaced (Tail)-PCR and Southern blot analysis identified 21 single transposon insertion sites. Seven of the insertion sites are located in non-coding regions, whereas the other 14 insertion sites are located in genes, including aroA, rmlA, rtxA, chiA and plc. All insertion mutants exhibited attenuated virulence in Tetrahymena and zebrafish. Furthermore, the relationship of two genes, chiA and trkH, to virulence was confirmed by gene inactivation and subsequent restoration assays. This study provides new information about the genetic determinants of A. hydrophila pathogenicity and validates the Aeromonas-Tetrahymena co-culture model for high-throughput screening of A. hydrophila virulence factors.
Collapse
Affiliation(s)
- Maoda Pang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Xie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhao Dong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hechao Du
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Nannan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Çiftci A, Onuk EE, Çiftci G, Fındık A, Söğüt MÜ, Didinen BI, Aksoy A, Üstünakın K, Gülhan T, Balta F, Altun S. Development and validation of glycoprotein-based native-subunit vaccine for fish against Aeromonas hydrophila. JOURNAL OF FISH DISEASES 2016; 39:981-992. [PMID: 27144782 DOI: 10.1111/jfd.12499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Aeromonas hydrophila is known to be causative agent of an infection named as Bacterial haemorrhagic septicaemia or red pest in freshwater fish. The aim of this study was to develop and validate the glycoprotein-based fish vaccine against Aeromonas hydrophila. For this aim, after identification and characterization of A. hydrophila isolates from fish farms, one A. hydrophila isolate was selected as vaccine strain. Antigenic glycoproteins of this vaccine strain were determined by Western blotting and glycan detection kit. The connection types of these glycoproteins were examined by glycoprotein differentiation kit. Two glycoproteins, molecular weights of 19 and 38 kDa, with SNA connection type were selected for use in vaccination trials. After their purification by SNA-specific lectin and size-exclusion chromatography, protection studies with purified proteins were performed. For challenge trials, four experimental fish groups were designated: Group I (with montanide), Group II (with montanide and ginseng), Group III [with Al(OH)3 ] and Group IV [with Al(OH)3 and ginseng]. The survival ratings of fish were determined, and protection was calculated as 21.56%, 29.41%, 69.83% and 78.88% in groups I, II, III and IV, respectively. In conclusion, A. hydrophila glycoproteins with Al(OH)3 and ginseng could be used as a safe and effective vaccine for fish.
Collapse
Affiliation(s)
- A Çiftci
- Department of Microbiology, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey
| | - E E Onuk
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey
| | - G Çiftci
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey
| | - A Fındık
- Department of Microbiology, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey
| | - M Ü Söğüt
- High School of Health, University of Ondokuz Mayıs, Samsun, Turkey
| | - B I Didinen
- Egirdir Fisheries Faculty, Suleyman Demirel University, Egirdir, Isparta, Turkey
| | - A Aksoy
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey
| | - K Üstünakın
- Samsun Veterinary Control and Research Institute, Samsun, Turkey
| | - T Gülhan
- Department of Microbiology, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Samsun, Turkey
| | - F Balta
- Department of Aquaculture, Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey
| | - S Altun
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
7
|
Zhang D, Pridgeon JW, Klesius PH. Vaccination of channel catfish with extracellular products of Aeromonas hydrophila provides protection against infection by the pathogen. FISH & SHELLFISH IMMUNOLOGY 2014; 36:270-275. [PMID: 24321514 DOI: 10.1016/j.fsi.2013.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 06/03/2023]
Abstract
Aeromonas hydrophila, a Gram-negative bacterium, is one of the economically-important pathogens in modern aquaculture. Among various traits, extracellular products (ECP) secreted by the bacterium are considered to be essential factors for virulence. Whether vaccination with the ECP could produce immune protection in catfish against the pathogen was determined in this study. The results showed that fish vaccinated with ECP had 100% of relative percent survival (RPS) when challenged with the pathogen two weeks post vaccination. The anti-ECP serum from vaccinated fish could aggregate cells of homogeneous bacteria as well as other virulent strains (isolates) of A. hydrophila but not an A. veronii isolate and a low virulent field isolate. The agglutination titers increased from two weeks to four weeks post immunization and sustained a high level at week seven when the RPS remained at 100%. The anti-ECP serum could also provide naïve fish with immediate protection against A. hydrophila as evidenced by passive immunization. Immunoblotting analysis showed that the anti-ECP serum contained antibodies that bound to specific targets, including protein and lipopolysaccharide-like molecules, in the ECP. Mass spectrometric analysis identified following putative proteins that may serve as important immunogens: chitinase, chitodextrinase, outer membrane protein85, putative metalloprotease, extracellular lipase, hemolysin and elastase. Findings revealed in this study suggest that, while ECP prepared in a conventional and convenient way could be a vaccine candidate, further characterization of antibody-mediated targets in the ECP would uncover quintessential antigens for the future development of highly efficacious vaccines.
Collapse
Affiliation(s)
- Dunhua Zhang
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | - Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA
| | - Phillip H Klesius
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA
| |
Collapse
|
8
|
Pridgeon JW, Klesius PH. G-protein coupled receptor 18 (GPR18) in channel catfish: expression analysis and efficacy as immunostimulant against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1070-1078. [PMID: 23891864 DOI: 10.1016/j.fsi.2013.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 06/02/2023]
Abstract
The objectives of this study were: 1) to determine the transcriptional profiles of G-protein coupled receptor 18 (GPR18) in channel catfish after infection with Aeromonas hydrophila compared to that in healthy catfish; 2) to determine whether over-expression of GPR18 in catfish gill cells will offer protection against infection of A. hydrophila; 3) to determine whether recombinant pcDNA-GPR18 could be used as an immunostimulant to protect channel catfish against A. hydrophila infection. Quantitative PCR revealed that the transcription levels of GPR18 in all tissues of infected catfish were significantly (P < 0.05) induced except in the intestine. When pcDNA3.2-vectored recombinant GPR18 was transfected in catfish gill cells G1B, the over-expression of pcDNA-GPR18 offered significant (P < 0.05) protection to G1B cells against A. hydrophila infection. When channel catfish were intraperitoneally injected with QCDCR adjuvant formulated pcDNA-GPR18 and challenged with a highly virulent A. hydrophila strain at 1-, 2-, 14-, and 28-days post treatment, pcDNA-GPR18 offered 50%, 100%, 57%, and 55% protection to channel catfish, respectively. Macrophages of fish treated with pcDNA-GPR18 produced significantly (P < 0.05) higher amounts of reactive oxygen species and nitric oxide than that of fish treated with pcDNA vector alone. In addition, serum lysozyme activity of catfish injected with pcDNA-GPR18 was significantly (P < 0.08) increased. Taken together, our results suggest that pcDNA-GPR18 could be used as a novel immunostimulant to provide immediate protection to channel catfish against A. hydrophila infection.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | |
Collapse
|
9
|
Pridgeon JW, Klesius PH. Apolipoprotein A1 in channel catfish: transcriptional analysis, antimicrobial activity, and efficacy as plasmid DNA immunostimulant against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1129-1137. [PMID: 23954697 DOI: 10.1016/j.fsi.2013.07.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 06/02/2023]
Abstract
The objectives of this study were to: 1) determine transcriptional profiles of apolipoprotein A1 (ApoA1) in collected channel catfish tissues after infection with Aeromonas hydrophila by bath immersion; 2) investigate whether recombinant channel catfish apolipoprotein A1 produced in Escherichia coli expression system possesses any antimicrobial activity against A. hydrophila; 3) evaulate whether recombinant channel catfish apolipoprotein A1 plasmid DNA could be used as immunostimulant to protect fish against A. hydrophila infection. Quantitative PCR revealed that the transcription levels of ApoA1 in infected catfish were significantly (P < 0.05) more induced in the anterior kidney. Recombinant apoA1 produced in E. coli expression system exhibited lytic activity against Gram-positive Micrococcus lysodeikticus and Gram-negative A. hydrophila. When pcDNA3.2-vectored recombinant apoA1 was transfected in channel catfish gill cells G1B, the over-expression of pcDNA-ApoA1 offered significant (P < 0.05) protection to G1B cells against A. hydrophila infection. When channel catfish were intraperitoneally injected with QCDCR adjuvant formulated pcDNA-ApoA1 and challenged with a highly virulent A. hydrophila strain AL-09-71 at two days post injection, pcDNA-ApoA1 injection offered 100% protection to channel catfish. Macrophages of fish injected with pcDNA-ApoA1 produced significantly (P < 0.05) higher amounts of reactive oxygen species and nitric oxide than that of fish injected with pcDNA vector alone. Our results suggest that pcDNA-ApoA1 could be used as a novel immunostimulant to offer immediate protection to catfish against A. hydrophila infection.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | |
Collapse
|
10
|
Pridgeon JW, Klesius PH, Dominowski PJ, Yancey RJ, Kievit MS. Recombinant goose-type lysozyme in channel catfish: lysozyme activity and efficacy as plasmid DNA immunostimulant against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1309-1319. [PMID: 23978564 DOI: 10.1016/j.fsi.2013.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
The objectives of this study were: 1) to investigate whether recombinant channel catfish lysozyme-g (CC-Lys-g) produced in Escherichia coli expression system possesses any lysozyme activity; and 2) to evaluate whether channel catfish lysozyme-g plasmid DNA could be used as an immunostimulant to protect channel catfish against Aeromonas hydrophila infection. Recombinant CC-Lys-g produced in E. coli expression system exhibited significant (P < 0.05) lytic activity against Gram-positive Micrococcus lysodeikticus and Gram-negative A. hydrophila. When pcDNA3.2-vectored recombinant channel catfish lysozyme-g (pcDNA-Lys-g) was transfected in channel catfish gill cells G1B, the over-expression of pcDNA-Lys-g offered significant (P < 0.05) protection to G1B cells against A. hydrophila infection. When channel catfish were intraperitoneally injected with pcDNA-Lys-g along with an adjuvant QCDCR, the transcriptional level of Lys-g was significantly (P < 0.05) increased. When pcDNA-Lys-g injected fish was challenged with a highly virulent A. hydrophila strain AL-09-71, pcDNA-Lys-g offered 100% protection to channel catfish at two days post DNA injection. Macrophages of fish injected with pcDNA-Lys-g produced significantly (P < 0.05) higher amounts of reactive oxygen species and nitric oxide than that of fish injected with pcDNA vector alone at two days post DNA injection. Taken together, our results suggest that pcDNA-Lys-g could be used as a novel immunostimulant to offer immediate protection to channel catfish against A. hydrophila infection.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | | | | | | | |
Collapse
|
11
|
Pridgeon JW, Klesius PH, Dominowski PJ, Yancey RJ, Kievit MS. Chicken-type lysozyme in channel catfish: expression analysis, lysozyme activity, and efficacy as immunostimulant against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2013; 35:680-688. [PMID: 23732847 DOI: 10.1016/j.fsi.2013.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
To understand whether chicken-type lysozyme (Lys-c) in channel catfish was induced by infection of Aeromonas hydrophila, the transcriptional levels of Lys-c in skin, gut, liver, spleen, posterior kidney, and blood cells in healthy channel catfish was compared to that in channel catfish infected with A. hydrophila by bath immersion. Quantitative PCR revealed that the transcription levels of Lys-c in infected catfish were significantly (P < 0.05) induced in all five tissues tested as well as in blood cells. Recombinant CC-Lys-c produced in Escherichia coli expression system (R-CC-Lys-c) exhibited significant (P < 0.05) lytic activity to Gram-positive Micrococcus lysodeikticus and Gram-negative A. hydrophila. When pcDNA3.2-vectored recombinant channel catfish lysozyme-c (pcDNA-Lys-c) was transfected in channel catfish gill cells G1B, the over-expression of pcDNA-Lys-c offered significant (P < 0.05) protection to G1B against A. hydrophila infection. When channel catfish were intraperitoneally injected with QCDCR adjuvant formulated pcDNA-Lys-c and challenged with a highly virulent A. hydrophila strain AL-09-71 at 1-, 2-, 14-, and 28-days post treatment, pcDNA-Lys-c offered 75%, 100%, 60%, and 77% protection to channel catfish, respectively. Macrophages of fish treated with pcDNA-Lys-c produced significantly (P < 0.05) higher amounts of reactive oxygen species and nitric oxide than that of fish treated with pcDNA vector alone. Taken together, our results suggest that pcDNA-Lys-c could be used as a novel immunostimulant to protect channel catfish against A. hydrophila infection.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | | | | | | | |
Collapse
|
12
|
Pridgeon JW, Klesius PH, Yildirim-Aksoy M. Attempt to develop live attenuated bacterial vaccines by selecting resistance to gossypol, proflavine hemisulfate, novobiocin, or ciprofloxacin. Vaccine 2013; 31:2222-30. [DOI: 10.1016/j.vaccine.2013.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/21/2013] [Accepted: 03/04/2013] [Indexed: 12/01/2022]
|
13
|
Pridgeon JW, Yildirim-Aksoy M, Klesius PH, Srivastava KK, Reddy PG. Attenuation of a virulent Aeromonas hydrophila with novobiocin and pathogenic characterization of the novobiocin-resistant strain. J Appl Microbiol 2012; 113:1319-28. [PMID: 22897434 DOI: 10.1111/j.1365-2672.2012.05430.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
AIM To determine whether novobiocin resistance strategy could be used to attenuate a virulent Aeromonas hydrophila AH11P strain and to characterize the growth and pathogenic differences between the novobiocin-resistant strain and its virulent parent strain AH11P. METHODS AND RESULTS A novobiocin-resistant strain AH11NOVO was obtained from a virulent Aer. hydrophila strain AH11P through selection of resistance to novobiocin. AH11NOVO was found to be avirulent to channel catfish (Ictalurus punctatus), whereas AH11P was virulent. When AH11NOVO vaccinated channel catfish were challenged with AH11P at 14 days postvaccination, relative per cent of survival of vaccinated fish was 100%. The cell proliferation rate of AH11NOVO was found to be significantly (P < 0.05) less than that of AH11P. In vitro motility assay revealed that AH11NOVO was nonmotile, whereas AH11P was motile. AH11NOVO had significantly (P < 0.05) lower in vitro chemotactic response to catfish mucus than that of AH11P. Although the ability of AH11NOVO to attach catfish gill cells was similar to that of AH11P, the ability of AH11NOVO to invade catfish gill cells was significantly (P < 0.05) lower than that of AH11P. CONCLUSIONS The novobiocin-resistant AH11NOVO is attenuated and different from its parent AH11P in pathogenicity. SIGNIFICANCE AND IMPACT OF THE STUDY The significantly lower chemotactic response and invasion ability of AH11NOVO compared with that of its virulent parent strain AH11P might shed light on the pathogenesis of Aer. hydrophila.
Collapse
Affiliation(s)
- J W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, Auburn, AL 36832, USA.
| | | | | | | | | |
Collapse
|
14
|
Mu X, Pridgeon JW, Klesius PH. Transcriptional profiles of multiple genes in the anterior kidney of channel catfish vaccinated with an attenuated Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1162-1172. [PMID: 22019831 DOI: 10.1016/j.fsi.2011.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/27/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
A total of 22 uniquely expressed sequence tags (ESTs) were identified from channel catfish anterior kidney subtractive cDNA library at 12 h post vaccination with an attenuated Aeromonas hydrophila (AL09-71 N+R). Of the 22 ESTs, six were confirmed to be significantly (P < 0.05) induced by the vaccination. Of 88 channel catfish genes selected from literature, 14 were found to be significantly (P < 0.05) upregulated by the vaccination. The transcriptional levels of the total 20 genes induced by the vaccination were then compared to that induced by the virulent parent A. hydrophila (AL09-71) at different time points. At 3 h post vaccination (hpv) or infection (hpi), Na(+)/K(+) ATPase α subunit was upregulated the most. At 6 and 12 hpv or hpi, hepcidin and interleukin-1β were induced the highest. At 24 hpv or hpi, hepcidin was upregulated the most, followed by lysozyme c. At 48 hpi, lysozyme c and hepcidin were significantly induced. When vaccinated fish were challenged by AL09-71, relative percent of survival of vaccinated fish were 100% at 14 days post vaccination (dpv). Transcriptional levels of toll-like receptor 5 and hepcidin were significantly upregulated in vaccinated fish at 14 dpv. Taken together, our results suggest that vaccination with attenuated A. hydrophila mimics infection by live bacteria, inducing multiple immune genes in channel catfish.
Collapse
Affiliation(s)
- Xingjiang Mu
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA
| | | | | |
Collapse
|
15
|
Pridgeon JW, Klesius PH. Development and efficacy of novobiocin and rifampicin-resistant Aeromonas hydrophila as novel vaccines in channel catfish and Nile tilapia. Vaccine 2011; 29:7896-904. [DOI: 10.1016/j.vaccine.2011.08.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/26/2022]
|
16
|
Isolation and analysis of the vaccine potential of an attenuated Edwardsiella tarda strain. Vaccine 2010; 28:6344-50. [PMID: 20637307 DOI: 10.1016/j.vaccine.2010.06.101] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/26/2010] [Accepted: 06/29/2010] [Indexed: 11/21/2022]
Abstract
Edwardsiella tarda is an important aquaculture pathogen that can infect a wide range of marine and freshwater fish worldwide. In this study, a modified E. tarda strain, TX5RM, was selected by multiple passages of the pathogenic E. tarda strain TX5 on growth medium containing the antibiotic rifampicin. Compared to the wild type strain, the rifampicin-resistant mutant TX5RM (i) shows drastically increased median lethal dose and reduced capacity to disseminate in and colonize fish tissues and blood; (ii) exhibits slower growth rates when cultured in rich medium or under conditions of iron depletion; and (iii) differs in the production profile of whole-cell proteins. The immunoprotective potential of TX5RM was examined in a Japanese flounder (Paralichthys olivaceus) model as a vaccine delivered via intraperitoneal injection, oral feeding, bath immersion, and oral feeding plus immersion. All the vaccination trials, except those of injection, were performed with a booster at 3-week after the first vaccination. The results showed that TX5RM administered via all four approaches produced significant protection, with the highest protection levels observed with TX5RM administered via oral feeding plus immersion, which were, in terms of relative percent of survival (RPS), 80.6% and 69.4% at 5- and 8-week post-vaccination, respectively. Comparable levels of specific serum antibody production were induced by TX5RM-vaccinated via different routes. Microbiological analyses showed that TX5RM was recovered from the gut, liver, and spleen of the fish at 1-10 days post-oral vaccination and from the spleen, liver, kidney, and blood of the fish at 1-14 days post-immersion vaccination. Taken together, these results indicate that TX5RM is an attenuated E. tarda strain with good vaccine potential and that a combination of oral and immersion vaccinations may be a good choice for the administration of live attenuated vaccines.
Collapse
|
17
|
Swain P, Behera T, Mohapatra D, Nanda P, Nayak S, Meher P, Das B. Derivation of rough attenuated variants from smooth virulent Aeromonas hydrophila and their immunogenicity in fish. Vaccine 2010; 28:4626-31. [DOI: 10.1016/j.vaccine.2010.04.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 04/20/2010] [Accepted: 04/26/2010] [Indexed: 11/25/2022]
|
18
|
Ni XD, Wang N, Liu YJ, Lu CP. Immunoproteomics of extracellular proteins of theAeromonas hydrophilaChina vaccine strain J-1 reveal a highly immunoreactive outer membrane protein. ACTA ACUST UNITED AC 2010; 58:363-73. [DOI: 10.1111/j.1574-695x.2009.00646.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Cheng S, Jiao XD, Zhang M, Sun L. Analysis of the vaccine potential of a laboratory Escherichia coli strain in a Japanese flounder model. FISH & SHELLFISH IMMUNOLOGY 2010; 28:275-280. [PMID: 19900558 DOI: 10.1016/j.fsi.2009.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 10/24/2009] [Accepted: 11/02/2009] [Indexed: 05/28/2023]
Abstract
Escherichia coli DH5alpha is a genetically tailored laboratory strain that is commonly used for general cloning. In this study, the vaccine potential of DH5alpha was investigated. It was found that when used as a live vaccine, DH5alpha could afford effective protection upon Japanese flounder against Aeromonas hydrophila infection. Vaccination with purified outer membrane proteins and lipopolysaccharides of DH5alpha failed to induce protective immunity against A. hydrophila. Specific antibody production was observed in fish immunized with DH5alpha, which lasted at least 8 weeks and was enhanced by a booster injection during the vaccination process. Analysis of the transcription profiles of immune-related genes showed that vaccination with DH5alpha heightened the expression of the genes encoding factors that are likely involved in both specific and nonspecific immunities. Furthermore, compared to the control fish, fish vaccinated with DH5alpha/pAQ1, which is DH5alpha harboring the plasmid pAQ1 that expresses the coding element of a Vibrio harveyi antigen, exhibited significantly improved survival rates following V. harveyi and A. hydrophila challenges. These results demonstrate that DH5alpha possesses intrinsic immunoprotective potential against A. hydrophila. This property, together with the feature of cloning friendliness, should render DH5alpha useful in the construction of cross-protective vaccines.
Collapse
Affiliation(s)
- Shuang Cheng
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | | | |
Collapse
|
20
|
Wang HR, Hu YH, Zhang WW, Sun L. Construction of an attenuated Pseudomonas fluorescens strain and evaluation of its potential as a cross-protective vaccine. Vaccine 2009; 27:4047-55. [DOI: 10.1016/j.vaccine.2009.04.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 01/09/2023]
|
21
|
Isolation of rifampicin resistant Flavobacterium psychrophilum strains and their potential as live attenuated vaccine candidates. Vaccine 2008; 26:5582-9. [DOI: 10.1016/j.vaccine.2008.07.083] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 11/24/2022]
|