1
|
Gates MC, Earl L, Enticott G. Factors influencing the performance of voluntary farmer disease reporting in passive surveillance systems: A scoping review. Prev Vet Med 2021; 196:105487. [PMID: 34507237 DOI: 10.1016/j.prevetmed.2021.105487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/26/2021] [Accepted: 09/01/2021] [Indexed: 01/06/2023]
Abstract
The impacts of exotic disease incursions on livestock industries can be mitigated by having robust surveillance systems in place that decrease the time between disease introduction and detection. An important component of this is having farmers routinely observe their animals for indications of clinical disease, recognise the existence of problems, and then decide to notify their veterinarian or animal health authorities. However, as highlighted by this literature review, farmers are believed to be underreporting clinical events due to factors such as (1) uncertainty around the clinical signs and situations that warrant reporting, (2) fear over the social and economic consequences from both positive and false positive reports, (3) negative beliefs regarding the efficacy and outcomes of response measures, (4) mistrust and dissatisfaction with animal health authorities, (5) absence of sufficiently attractive financial and non-financial incentives for submitting reports, and (6) poor awareness of the procedures involved with the submission, processing, and response to reports. There have been few formal studies evaluating the efficacy of different approaches to increasing farmer engagement with disease reporting. However, there is a recognised need for any proposed solutions to account for farmer knowledge and experience with assessing their own farm situation as well as the different identities, motivations, and beliefs that farmers have about their role in animal health surveillance systems. Empowering farmers to take a more active role in developing these solutions is likely to become even more important as animal health authorities increasingly look to establish public-private partnerships for biosecurity governance.
Collapse
Affiliation(s)
- M Carolyn Gates
- School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| | - Lynsey Earl
- Diagnostic and Surveillance Services, Biosecurity New Zealand, Tiakitanga Pūtaiao Aotearoa, Ministry for Primary Industries, Manatū Ahu Matua, PO Box 2526, Wellington, 6140, New Zealand
| | - Gareth Enticott
- Cardiff School of Geography and Planning, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3WA, United Kingdom
| |
Collapse
|
2
|
Active animal health surveillance in European Union Member States: gaps and opportunities. Epidemiol Infect 2016; 145:802-817. [PMID: 27938416 DOI: 10.1017/s0950268816002697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Animal health surveillance enables the detection and control of animal diseases including zoonoses. Under the EU-FP7 project RISKSUR, a survey was conducted in 11 EU Member States and Switzerland to describe active surveillance components in 2011 managed by the public or private sector and identify gaps and opportunities. Information was collected about hazard, target population, geographical focus, legal obligation, management, surveillance design, risk-based sampling, and multi-hazard surveillance. Two countries were excluded due to incompleteness of data. Most of the 664 components targeted cattle (26·7%), pigs (17·5%) or poultry (16·0%). The most common surveillance objectives were demonstrating freedom from disease (43·8%) and case detection (26·8%). Over half of components applied risk-based sampling (57·1%), but mainly focused on a single population stratum (targeted risk-based) rather than differentiating between risk levels of different strata (stratified risk-based). About a third of components were multi-hazard (37·3%). Both risk-based sampling and multi-hazard surveillance were used more frequently in privately funded components. The study identified several gaps (e.g. lack of systematic documentation, inconsistent application of terminology) and opportunities (e.g. stratified risk-based sampling). The greater flexibility provided by the new EU Animal Health Law means that systematic evaluation of surveillance alternatives will be required to optimize cost-effectiveness.
Collapse
|
3
|
Screening and confirmatory method for multiclass determination of 62 antibiotics in meat. J Chromatogr A 2016; 1429:175-88. [DOI: 10.1016/j.chroma.2015.12.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 11/18/2022]
|
4
|
Schärrer S, Widgren S, Schwermer H, Lindberg A, Vidondo B, Zinsstag J, Reist M. Evaluation of farm-level parameters derived from animal movements for use in risk-based surveillance programmes of cattle in Switzerland. BMC Vet Res 2015; 11:149. [PMID: 26170195 PMCID: PMC4499910 DOI: 10.1186/s12917-015-0468-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 07/06/2015] [Indexed: 11/25/2022] Open
Abstract
Background This study focused on the descriptive analysis of cattle movements and farm-level parameters derived from cattle movements, which are considered to be generically suitable for risk-based surveillance systems in Switzerland for diseases where animal movements constitute an important risk pathway. Methods A framework was developed to select farms for surveillance based on a risk score summarizing 5 parameters. The proposed framework was validated using data from the bovine viral diarrhoea (BVD) surveillance programme in 2013. Results A cumulative score was calculated per farm, including the following parameters; the maximum monthly ingoing contact chain (in 2012), the average number of animals per incoming movement, use of mixed alpine pastures and the number of weeks in 2012 a farm had movements registered. The final score for the farm depended on the distribution of the parameters. Different cut offs; 50, 90, 95 and 99 %, were explored. The final scores ranged between 0 and 5. Validation of the scores against results from the BVD surveillance programme 2013 gave promising results for setting the cut off for each of the five selected farm level criteria at the 50th percentile. Restricting testing to farms with a score ≥ 2 would have resulted in the same number of detected BVD positive farms as testing all farms, i.e., the outcome of the 2013 surveillance programme could have been reached with a smaller survey. Conclusions The seasonality and time dependency of the activity of single farms in the networks requires a careful assessment of the actual time period included to determine farm level criteria. However, selecting farms in the sample for risk-based surveillance can be optimized with the proposed scoring system. The system was validated using data from the BVD eradication program. The proposed method is a promising framework for the selection of farms according to the risk of infection based on animal movements.
Collapse
Affiliation(s)
- Sara Schärrer
- Veterinary Public Health Institute (VPHI), Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | | | - Ann Lindberg
- National Veterinary Institute (SVA), Uppsala, Sweden.
| | - Beatriz Vidondo
- Veterinary Public Health Institute (VPHI), Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute (Swiss TPH), University of Basel, Basel, Switzerland.
| | - Martin Reist
- Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland.
| |
Collapse
|
5
|
Schärrer S, Schwermer H, Presi P, Lindberg A, Zinsstag J, Reist M. Cost and sensitivity of on-farm versus slaughterhouse surveys for prevalence estimation and substantiating freedom from disease. Prev Vet Med 2015; 120:51-61. [PMID: 25724077 DOI: 10.1016/j.prevetmed.2015.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 01/25/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Within the framework of Swiss surveillance for epizootic diseases, dairy cattle are sampled using bulk tank milk while non-dairy cattle are sampled on the farm. The latter method is costly, time-demanding and dangerous for the personnel. However, slaughterhouses could be an alternative sampling point for this population. To assess the cost-effectiveness and sensitivity of such an approach, surveillance using slaughterhouse sampling was modelled with data from the 2012 Swiss animal movement database (AMD). We simulated a cross-sectional study for bluetongue (BT), and surveillance programmes to substantiate freedom from infectious bovine rhinotracheitis (IBR) and enzootic bovine leucosis (EBL) (combined) to compare the outcome of random on-farm sampling versus slaughterhouse sampling. We found that, under Swiss conditions, slaughterhouse sampling results in low herd-level sensitivities because animals are sent by owners to slaughter individually and not in large groups, restricting the number of samples per herd. This makes slaughterhouse sampling inappropriate for prevalence surveys at the herd-level. However, for prevalence surveys at the animal-level and for substantiation of freedom from disease, slaughterhouse surveillance is equally or more cost-efficient than on-farm sampling.
Collapse
Affiliation(s)
- Sara Schärrer
- Veterinary Public Health Institute, University of Berne, Berne, Switzerland.
| | | | - Patrick Presi
- Veterinary Public Health Institute, University of Berne, Berne, Switzerland
| | | | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Martin Reist
- Food Safety and Veterinary Office, Berne, Switzerland
| |
Collapse
|
6
|
Alegría R, Arriagada G, Urcelay S, Hamilton-West C. Cross-sectional study to investigate the presence of salmon pancreas disease virus in wild and feral fish populations in 10 lakes, Los Lagos Region, Chile. JOURNAL OF FISH DISEASES 2015; 38:113-119. [PMID: 24382013 DOI: 10.1111/jfd.12217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/15/2013] [Accepted: 11/16/2013] [Indexed: 06/03/2023]
Affiliation(s)
- R Alegría
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Science, University of Chile, Santiago, Chile; PhD Program in Agriculture, Forestry and Veterinary Science, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
7
|
Hoinville L, Alban L, Drewe J, Gibbens J, Gustafson L, Häsler B, Saegerman C, Salman M, Stärk K. Proposed terms and concepts for describing and evaluating animal-health surveillance systems. Prev Vet Med 2013; 112:1-12. [DOI: 10.1016/j.prevetmed.2013.06.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 05/22/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
|
8
|
Assessment of confidence in freedom from Aujeszky's disease and classical swine fever in Danish pigs based on serological sampling—Effect of reducing the number of samples. Prev Vet Med 2013; 110:214-22. [DOI: 10.1016/j.prevetmed.2012.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
|
9
|
Tavornpanich S, Wells SJ, Fossler CP, Roussel AJ, Gardner IA. Evaluation of an alternative method of herd classification for infection with paratuberculosis in cattle herds in the United States. Am J Vet Res 2012; 73:248-56. [PMID: 22280386 DOI: 10.2460/ajvr.73.2.248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To develop a better system for classification of herd infection status for paratuberculosis (Johne's disease [JD]) in US cattle herds on the basis of the risk of potential transmission of Mycobacterium avium subsp paratubeculosis. SAMPLE Simulated data for herd size and within-herd prevalence; sensitivity and specificity for test methods obtained from consensus-based estimates. PROCEDURES Interrelationships among variables influencing interpretation and classification of herd infection status for JD were evaluated by use of simulated data for various herd sizes, true within-herd prevalences, and sampling and testing methods. The probability of finding ≥ 1 infected animal in herds was estimated for various testing methods and sample sizes by use of hypergeometric random sampling. RESULTS 2 main components were required for the new herd JD classification system: the probability of detection of infection determined on the basis of test results from a sample of animals and the maximum detected number of animals with positive test results. Tables were constructed of the estimated probability of detection of infection, and the maximum number of cattle with positive test results or fecal pools with positive culture results with 95% confidence for classification of herd JD infection status were plotted. Herd risk for JD was categorized on the basis of 95% confidence that the true within-herd prevalence was ≤ 15%, ≤ 10%, ≤ 5%, or ≤ 2%. CONCLUSIONS AND CLINICAL RELEVANCE Analysis of the findings indicated that a scientifically rigorous and transparent herd classification system for JD in cattle is feasible.
Collapse
Affiliation(s)
- Saraya Tavornpanich
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, USA
| | | | | | | | | |
Collapse
|
10
|
Reist M, Jemmi T, Stärk KDC. Policy-driven development of cost-effective, risk-based surveillance strategies. Prev Vet Med 2012; 105:176-84. [PMID: 22265642 DOI: 10.1016/j.prevetmed.2011.12.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/27/2011] [Accepted: 12/04/2011] [Indexed: 11/17/2022]
Abstract
Animal health and residue surveillance verifies the good health status of the animal population, thereby supporting international free trade of animals and animal products. However, active surveillance is costly and time-consuming. The development of cost-effective tools for animal health and food hazard surveillance is therefore a priority for decision-makers in the field of veterinary public health. The assumption of this paper is that outcome-based formulation of standards, legislation leaving room for risk-based approaches and close collaboration and a mutual understanding and exchange between scientists and policy makers are essential for cost-effective surveillance. We illustrate this using the following examples: (i) a risk-based sample size calculation for surveys to substantiate freedom from diseases/infection, (ii) a cost-effective national surveillance system for Bluetongue using scenario tree modelling and (iii) a framework for risk-based residue monitoring. Surveys to substantiate freedom from infectious bovine rhinotracheitis and enzootic bovine leucosis between 2002 and 2009 saved over 6 million € by applying a risk-based sample size calculation approach, and by taking into account prior information from repeated surveys. An open, progressive policy making process stimulates research and science to develop risk-based and cost-efficient survey methodologies. Early involvement of policy makers in scientific developments facilitates implementation of new findings and full exploitation of benefits for producers and consumers.
Collapse
Affiliation(s)
- M Reist
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Berne, Schwarzenburgstrasse 155, CH-3097 Liebefeld, Switzerland.
| | | | | |
Collapse
|
11
|
Torsein M, Lindberg A, Sandgren CH, Waller KP, Törnquist M, Svensson C. Risk factors for calf mortality in large Swedish dairy herds. Prev Vet Med 2011; 99:136-47. [PMID: 21257214 PMCID: PMC7132482 DOI: 10.1016/j.prevetmed.2010.12.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 11/28/2022]
Abstract
The aim of this study was to identify possible risk factors for 1-90 day calf mortality in large Swedish dairy herds. Sixty herds with a herd size of ≥160 cows were visited once between December 2005 and March 2006. Thirty herds were known to have low mortality (LM) and 30 were known high mortality herds (HM). Upon the visit, data about housing and management was collected from interviews with personnel responsible for the calves. The herd status regarding the calves' passive transfer (total protein), levels of α-tocopherol, β-carotene and retinol, and excretion of faecal pathogens (Cryptosporidium spp., Escherichia coli F5, rota and corona virus) was evaluated based on targeted sampling of high risk calf groups; in each herd, blood and faecal samples were collected from calves 1-7 and 1-14 days old, respectively. Similarly, the herd status regarding clinical respiratory disease in calves and history of respiratory virus exposure was evaluated based on lung auscultations and blood samplings of calves 60-90 days old. The median calf mortality risk (in calves 1-90 days of age) among HM herds was 9% (Range: 6-24%) and among LM herds 1% (Range: 0-2%). LM and HM herds were compared using five logistic regression models, covering potential risk factors within different areas: "Disease susceptibility", "Factors affecting the gastrointestinal tract", "Factors related to transmission of infectious disease", "Hygiene" and "Labour management". The percentage of calves, 1-7 days old, with inadequate serum concentrations of α-tocopherol and β-carotene were significantly higher in HM herds compared to LM herds and also associated with higher odds of being a HM herd (OR=1.02; p=0.023 and OR=1.05; p=0.0028, respectively). The variable "Average number of faecal pathogens in the sampled target group" was significantly associated with higher odds of being a HM herd (OR=4.65; p=0.015), with a higher average in HM herds. The percentage of calves with diarrhoea treated with antibiotics was significantly higher in HM herds and was associated with higher odds of being a HM herd (OR=1.08; p=0.021). The median age at death of calves in the age interval 1-90 days that died during a one-year period was significantly lower among HM herds (13 days) than in LM herds (24 days) (p=0.0013) The results indicate that gastrointestinal disorders may be an important cause of calf mortality in large Swedish dairy herds. Furthermore, our study provides additional indications that fat soluble vitamins might play an important role for calf health.
Collapse
Affiliation(s)
- Maria Torsein
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, P.O. Box 234, SE-532 23 Skara, Sweden.
| | | | | | | | | | | |
Collapse
|