1
|
Fairbanks EL, Baylis M, Daly JM, Tildesley MJ. Inference for a spatio-temporal model with partial spatial data: African horse sickness virus in Morocco. Epidemics 2022; 39:100566. [DOI: 10.1016/j.epidem.2022.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 11/03/2022] Open
|
2
|
Bayrou C, Lesenfants C, Paternostre J, Volpe R, Moula N, Coupeau D, Muylkens B, Desmecht D, Linden A. Schmallenberg virus, cyclical reemergence in the core region: A seroepidemiologic study in wild cervids, Belgium, 2012-2017. Transbound Emerg Dis 2021; 69:1625-1633. [PMID: 33949132 DOI: 10.1111/tbed.14136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/02/2021] [Accepted: 04/27/2021] [Indexed: 11/27/2022]
Abstract
Schmallenberg virus emerged in 2011 in Europe. The epicentre of primordial spreading was the region straddling Germany, the Netherlands and Belgium. One of the key questions is whether the newcomer would establish a lasting presence on the continent. The apparent seroprevalence in southern Belgium wild deer populations was followed for 6 years. Two years of intense circulation were revealed, 2012 and 2016, characterized by a peak seroprevalence in the two studied populations (Capreolus capreolus and Cervus elaphus). Between the peak years and after 2016, apparent seroprevalences declined rapidly among adults and became nil among juveniles. The general pattern of apparent seroprevalence evolution observed is consistent with a cyclic circulation of Schmallenberg virus, similar to what is observed for other Orthobunyaviruses in endemic areas. These data also suggest that wild cervids play no central role in the circulation dynamics of the virus.
Collapse
Affiliation(s)
- Calixte Bayrou
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Christophe Lesenfants
- Surveillance Network for Wildlife Diseases, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Julien Paternostre
- Surveillance Network for Wildlife Diseases, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Rosario Volpe
- Surveillance Network for Wildlife Diseases, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nassim Moula
- Animal Productions, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Damien Coupeau
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Benoît Muylkens
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Daniel Desmecht
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Annick Linden
- Surveillance Network for Wildlife Diseases, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Godber OF, Chentouf M, Wall R. Sustainable goat production: modelling optimal performance in extensive systems. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Strategies for achieving greater ruminant livestock productivity are essential to meet the food demands of growing populations, but sustainable changes are difficult to identify given the inherent complexity of such systems. Systems models can address this issue by allowing the impact of potential changes to be explored.
Aims
To develop a holistic systems model for goat production in an extensive Mediterranean environment which could allow changes in key management factors influencing the system to be investigated.
Methods
Initially, a conceptual comprehensive stock-and-flow model of a representative Mediterranean goat production system was constructed. This was used to identify informative indicators that would represent the overall technical and economic performance of the system. Sub-models were then assembled to build the full systems model. The model was parameterised with data collected over 3 years for goat holdings in northern Morocco. Scenario analysis techniques are used to explore the strategies that optimise performance under climate and feed price challenges.
Key results
Meat production is particularly important during periods of drought when increased meat yields can counteract the expected reduction in milk yields, to protect human food security, prevent excessive rangeland degradation and preserve natural nutritional resources. Feed price shocks during drought can have significant negative impacts on the system and zero feed input is shown to be a more sustainable strategy than reliance on high price feed during drought. Any alternative feed sources need to have a high forage component to reduce grazing periods significantly and promote rangeland preservation.
Implications
A diverse management strategy with a mixed meat and dairy semi-intensive production is more stable than specialised dairy systems and allows goat production and financial viability of intensification to be maintained under climatic stress; maintaining meat production was necessary to optimise performance.
Conclusions
The model allows improved insight into management strategies which could optimise animal husbandry performance in goat subsistence systems. However, the work also demonstrates the difficulty of constructing a truly holistic model since, to be practical, such constructs must necessarily be bounded; parameter selection and the limits to the boundaries imposed are inevitably critical.
Collapse
|
4
|
Collins ÁB, Doherty ML, Barrett DJ, Mee JF. Schmallenberg virus: a systematic international literature review (2011-2019) from an Irish perspective. Ir Vet J 2019; 72:9. [PMID: 31624588 PMCID: PMC6785879 DOI: 10.1186/s13620-019-0147-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
In Autumn 2011, nonspecific clinical signs of pyrexia, diarrhoea, and drop in milk yield were observed in dairy cattle near the German town of Schmallenberg at the Dutch/German border. Targeted veterinary diagnostic investigations for classical endemic and emerging viruses could not identify a causal agent. Blood samples were collected from animals with clinical signs and subjected to metagenomic analysis; a novel orthobunyavirus was identified and named Schmallenberg virus (SBV). In late 2011/early 2012, an epidemic of abortions and congenital malformations in calves, lambs and goat kids, characterised by arthrogryposis and hydranencephaly were reported in continental Europe. Subsequently, SBV RNA was confirmed in both aborted and congenitally malformed foetuses and also in Culicoides species biting midges. It soon became evident that SBV was an arthropod-borne teratogenic virus affecting domestic ruminants. SBV rapidly achieved a pan-European distribution with most countries confirming SBV infection within a year or two of the initial emergence. The first Irish case of SBV was confirmed in the south of the country in late 2012 in a bovine foetus. Since SBV was first identified in 2011, a considerable body of scientific research has been conducted internationally describing this novel emerging virus. The aim of this systematic review is to provide a comprehensive synopsis of the most up-to-date scientific literature regarding the origin of SBV and the spread of the Schmallenberg epidemic, in addition to describing the species affected, clinical signs, pathogenesis, transmission, risk factors, impact, diagnostics, surveillance methods and control measures. This review also highlights current knowledge gaps in the scientific literature regarding SBV, most notably the requirement for further research to determine if, and to what extent, SBV circulation occurred in Europe and internationally during 2017 and 2018. Moreover, recommendations are also made regarding future arbovirus surveillance in Europe, specifically the establishment of a European-wide sentinel herd surveillance program, which incorporates bovine serology and Culicoides entomology and virology studies, at national and international level to monitor for the emergence and re-emergence of arboviruses such as SBV, bluetongue virus and other novel Culicoides-borne arboviruses.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland.,2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Michael L Doherty
- 2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Damien J Barrett
- Department of Agriculture, Surveillance, Animal By-Products and TSE Division, Food and the Marine, Backweston, Celbridge, Co. Kildare Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland
| |
Collapse
|
5
|
Villard P, Muñoz F, Balenghien T, Baldet T, Lancelot R, Hénaux V. Modeling Culicoides abundance in mainland France: implications for surveillance. Parasit Vectors 2019; 12:391. [PMID: 31387649 PMCID: PMC6683357 DOI: 10.1186/s13071-019-3642-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biting midges of the genus Culicoides Latreille (Diptera: Ceratopogonidae) are involved in the transmission of several viruses affecting humans and livestock, particularly bluetongue (BTV). Over the last decade, Culicoides surveillance has been conducted discontinuously and at various temporal and spatial scales in mainland France following the BTV epizootics in 2008-2009 and its reemergence and continuous circulation since 2015. The ability to predict seasonal dynamics and spatial abundance of Culicoides spp. is a key element in identifying periods and areas at high risk of transmission in order to strengthen surveillance for early detection and to establish seasonally disease-free zones. The objective of this study was to model the abundance of Culicoides spp. using surveillance data. METHODS A mixed-effect Poisson model, adjusted for overdispersion and taking into account temperature data at each trap location, was used to model the weekly relative abundance of Culicoides spp. over a year in 24 vector zones, based on surveillance data collected during 2009-2012. Vector zones are the spatial units used for Culicoides surveillance since 2016 in mainland France. RESULTS The curves of the predicted annual abundance of Culicoides spp. in vector zones showed three different shapes: unimodal, bimodal or plateau, reflecting the temporal variability of the observed counts between zones. For each vector zone, the model enabled to identify periods of vector activity ranging from 25 to 51 weeks. CONCLUSIONS Although the data were collected for surveillance purposes, our modeling approach integrating vector data with daily temperatures, which are known to be major drivers of Culicoides spp. activity, provided areas-specific predictions of Culicoides spp. abundance. Our findings provide decisions makers with essential information to identify risk periods in each vector zone and guide the allocation of resources for surveillance and control. Knowledge of Culicoides spp. dynamics is also of primary importance for modeling the risk of establishment and spread of midge-borne diseases in mainland France.
Collapse
Affiliation(s)
- Pierre Villard
- CIRAD, UMR ASTRE, 34398 Montpellier, France
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- Unité Epidémiologie et Appui à la Surveillance, Laboratoire de Lyon, Université de Lyon - ANSES, 31 Avenue Tony Garnier, 69007 Lyon, France
| | - Facundo Muñoz
- CIRAD, UMR ASTRE, 34398 Montpellier, France
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
| | - Thomas Balenghien
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- Unité Microbiologie, Immunologie et Maladies Contagieuses, Institut Agronomique et Vétérinaire Hassan II, 10100 Rabat, Morocco
- CIRAD, UMR ASTRE, 10101 Rabat, Morocco
| | - Thierry Baldet
- CIRAD, UMR ASTRE, 34398 Montpellier, France
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
| | - Renaud Lancelot
- CIRAD, UMR ASTRE, 34398 Montpellier, France
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
| | - Viviane Hénaux
- Unité Epidémiologie et Appui à la Surveillance, Laboratoire de Lyon, Université de Lyon - ANSES, 31 Avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
6
|
Schmallenberg virus in Azerbaijan 2012-2018. Arch Virol 2019; 164:1877-1881. [PMID: 31079212 DOI: 10.1007/s00705-019-04278-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/07/2019] [Indexed: 10/26/2022]
Abstract
Schmallenberg virus is an orthobunyavirus that infects ruminants and can cause transient fever, diarrhea, reduced milk production, congenital malformations, and abortions. Following the first suspected cases in Azerbaijan, a surveillance study was launched to determine and follow the situation. Serum samples and fetal tissue were collected starting October 2012 and tested via ELISA and qPCR. A first wave of Schmallenberg virus infections was detected in 2012/2013 in, and was largely limited to, the southern part of the country. In the second and larger wave in 2013/2014, cases were found throughout most of the country. Since then, no major outbreaks have been recorded.
Collapse
|
7
|
Sellman S, Tsao K, Tildesley MJ, Brommesson P, Webb CT, Wennergren U, Keeling MJ, Lindström T. Need for speed: An optimized gridding approach for spatially explicit disease simulations. PLoS Comput Biol 2018; 14:e1006086. [PMID: 29624574 PMCID: PMC5906030 DOI: 10.1371/journal.pcbi.1006086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 04/18/2018] [Accepted: 03/12/2018] [Indexed: 11/21/2022] Open
Abstract
Numerical models for simulating outbreaks of infectious diseases are powerful tools for informing surveillance and control strategy decisions. However, large-scale spatially explicit models can be limited by the amount of computational resources they require, which poses a problem when multiple scenarios need to be explored to provide policy recommendations. We introduce an easily implemented method that can reduce computation time in a standard Susceptible-Exposed-Infectious-Removed (SEIR) model without introducing any further approximations or truncations. It is based on a hierarchical infection process that operates on entire groups of spatially related nodes (cells in a grid) in order to efficiently filter out large volumes of susceptible nodes that would otherwise have required expensive calculations. After the filtering of the cells, only a subset of the nodes that were originally at risk are then evaluated for actual infection. The increase in efficiency is sensitive to the exact configuration of the grid, and we describe a simple method to find an estimate of the optimal configuration of a given landscape as well as a method to partition the landscape into a grid configuration. To investigate its efficiency, we compare the introduced methods to other algorithms and evaluate computation time, focusing on simulated outbreaks of foot-and-mouth disease (FMD) on the farm population of the USA, the UK and Sweden, as well as on three randomly generated populations with varying degree of clustering. The introduced method provided up to 500 times faster calculations than pairwise computation, and consistently performed as well or better than other available methods. This enables large scale, spatially explicit simulations such as for the entire continental USA without sacrificing realism or predictive power. Numerical models for simulating the outbreak of infectious disease are powerful tools that can be used to inform policy decisions by simulating outbreaks and control actions. However, they rely on considerable computational power to explore all outcomes and scenarios of interest. Focusing on model types commonly used for livestock diseases, we here introduce novel algorithms for efficient computation, alongside techniques to optimize them based on simplifying assumptions. Through simulations of FMD outbreak in the US, the UK and Sweden, as well as in computer generated landscapes, we test how these methods perform under realistic conditions. We find that our optimization techniques works well, and when the introduced algorithms are implemented with these optimizations, computation time can be reduced by more than two orders of magnitude compared to pairwise calculations. We propose that the considered algorithms—which are straight forward to implement—will be useful for simulation of a wide range of diseases, and will promote the use of simulation models for policy recommendation.
Collapse
Affiliation(s)
- Stefan Sellman
- Department of Physics, Chemistry and Biology, Division of Theoretical Biology, Linköping University, Linköping, Sweden
- * E-mail:
| | - Kimberly Tsao
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
| | - Michael J. Tildesley
- Zeeman Institute (SBIDER), School of Life Sciences and Mathematics Institute, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Peter Brommesson
- Department of Physics, Chemistry and Biology, Division of Theoretical Biology, Linköping University, Linköping, Sweden
| | - Colleen T. Webb
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
| | - Uno Wennergren
- Department of Physics, Chemistry and Biology, Division of Theoretical Biology, Linköping University, Linköping, Sweden
| | - Matt J. Keeling
- Zeeman Institute (SBIDER), School of Life Sciences and Mathematics Institute, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Tom Lindström
- Department of Physics, Chemistry and Biology, Division of Theoretical Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Community analysis of the abundance and diversity of biting midge species (Diptera: Ceratopogonidae) in three European countries at different latitudes. Parasit Vectors 2018; 11:217. [PMID: 29587832 PMCID: PMC5872509 DOI: 10.1186/s13071-018-2792-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The outbreaks of bluetongue and Schmallenberg disease in Europe have increased efforts to understand the ecology of Culicoides biting midges and their role in pathogen transmission. However, most studies have focused on a specific habitat, region, or country. To facilitate wider comparisons, and to obtain a better understanding of the spread of disease through Europe, the present study focused on monitoring biting midge species diversity in three different habitat types and three countries across Europe. METHODS Biting midges were trapped using Onderstepoort Veterinary Institute light traps at a total of 27 locations in Sweden, the Netherlands and Italy, comprising farm, peri-urban and wetland habitats. From July 2014 to June 2015 all locations were sampled monthly, except for during the winter months. Trapped midges were counted and identified morphologically. Indices on species richness, evenness and diversity were calculated. Community compositions were analysed using non-metric multidimensional scaling (NMDS) techniques. RESULTS A total of 50,085 female midges were trapped during 442 collection nights. More than 88% of these belonged to the Obsoletus group. The highest midge diversity was found in Sweden, while species richness was highest in the Netherlands, and most specimens were trapped in Italy. For habitats within countries, diversity of the trapped midges was lowest for farms in all countries. Differences in biting midge species communities were more distinct across the three countries than the three habitat types. CONCLUSIONS A core midge community could be identified, in which the Obsoletus group was the most abundant. Variations in vector communities across countries imply different patterns of disease spread throughout Europe. How specific species and their associated communities affect disease risk is still unclear. Our results emphasize the importance of midge diversity data at community level, how this differs across large geographic range within Europe, and its implications on assessing risks of midge-borne disease outbreaks.
Collapse
|
9
|
Barber J, Harrup LE, Silk R, Veronesi E, Gubbins S, Bachanek-Bankowska K, Carpenter S. Blood-feeding, susceptibility to infection with Schmallenberg virus and phylogenetics of Culicoides (Diptera: Ceratopogonidae) from the United Kingdom. Parasit Vectors 2018; 11:116. [PMID: 29486789 PMCID: PMC6389053 DOI: 10.1186/s13071-018-2650-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 01/16/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Culicoides biting midges (Diptera: Ceratopogonidae) are responsible for the biological transmission of internationally important arboviruses of livestock. In 2011, a novel Orthobunyavirus was discovered in northern Europe causing congenital malformations and abortions in ruminants. From field studies, Culicoides were implicated in the transmission of this virus which was subsequently named Schmallenberg virus (SBV), but to date no assessment of susceptibility to infection of field populations under standardised laboratory conditions has been carried out. We assessed the influence of membrane type (chick skin, collagen, Parafilm M®) when offered in conjunction with an artificial blood-feeding system (Hemotek, UK) on field-collected Culicoides blood-feeding rates. Susceptibility to infection with SBV following blood-feeding on an SBV-blood suspension provided via either (i) the Hemotek system or via (ii) a saturated cotton wool pledglet was then compared. Schmallenberg virus susceptibility was defined by RT-qPCR of RNA extractions of head homogenates and related to Culicoides species and haplotype identifications based on the DNA barcode region of the mitochondrial cytochrome c oxidase 1 (cox1) gene. RESULTS Culicoides blood-feeding rates were low across all membrane types tested (7.5% chick skin, 0.0% for collagen, 4.4% Parafilm M®, with 6029 female Culicoides being offered a blood meal in total). Susceptibility to infection with SBV through membrane blood-feeding (8 of 109 individuals tested) and pledglet blood-feeding (1 of 94 individuals tested) was demonstrated for the Obsoletus complex, with both C. obsoletus (Meigen) and C. scoticus Downes & Kettle susceptible to infection with SBV through oral feeding. Potential evidence of cryptic species within UK populations was found for the Obsoletus complex in phylogenetic analyses of cox1 DNA barcodes of 74 individuals assessed from a single field-site. CONCLUSIONS Methods described in this study provide the means to blood-feed Palaearctic Culicoides for vector competence studies and colonisation attempts. Susceptibility to SBV infection was 7.3% for membrane-fed members of the subgenus Avaritia and 1.1% for pledglet-fed. Both C. obsoletus and C. scoticus were confirmed as being susceptible to infection with SBV, with potential evidence of cryptic species within UK Obsoletus complex specimens, however the implications of cryptic diversity in the Obsoletus complex on arbovirus transmission remains unknown.
Collapse
Affiliation(s)
- James Barber
- Vector-borne Viral Disease Programme, The Pirbright Institute, Pirbright, Surrey, UK
| | - Lara E Harrup
- Vector-borne Viral Disease Programme, The Pirbright Institute, Pirbright, Surrey, UK
| | - Rhiannon Silk
- Vector-borne Viral Disease Programme, The Pirbright Institute, Pirbright, Surrey, UK
| | - Eva Veronesi
- Vector-borne Viral Disease Programme, The Pirbright Institute, Pirbright, Surrey, UK.,National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, Winterthurerstr. 266a, 8057, Zürich, Switzerland
| | - Simon Gubbins
- Vector-borne Viral Disease Programme, The Pirbright Institute, Pirbright, Surrey, UK
| | | | - Simon Carpenter
- Vector-borne Viral Disease Programme, The Pirbright Institute, Pirbright, Surrey, UK.
| |
Collapse
|
10
|
Stavrou A, Daly JM, Maddison B, Gough K, Tarlinton R. How is Europe positioned for a re-emergence of Schmallenberg virus? Vet J 2017; 230:45-51. [PMID: 28668462 DOI: 10.1016/j.tvjl.2017.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/23/2017] [Accepted: 04/17/2017] [Indexed: 11/30/2022]
Abstract
Schmallenberg virus (SBV) caused a large scale epidemic in Europe from 2011 to 2013, infecting ruminants and causing foetal deformities after infection of pregnant animals. The main impact of the virus was financial loss due to restrictions on trade of animals, meat and semen. Although effective vaccines were produced, their uptake was never high. Along with the subsequent decline in new SBV infections and natural replacement of previously exposed livestock, this has resulted in a decrease in the number of protected animals. Recent surveillance has shown that a large population of naïve animals is currently present in Europe and that the virus is circulating at a low level. These changes in animal status, in combination with favourable conditions for insect vectors, may open the door to the re-emergence of SBV and another large scale outbreak in Europe. This review details the potential and preparedness for SBV re-emergence in Europe, discusses possible co-ordinated sentinel monitoring programmes for ruminant seroconversion and the presence of SBV in the insect vectors, and provides an overview of the economic impact associated with diagnosis, control and the effects of non-vaccination.
Collapse
Affiliation(s)
- Anastasios Stavrou
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Janet M Daly
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Ben Maddison
- Biotechnology Group, ADAS, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Kevin Gough
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom.
| |
Collapse
|
11
|
Sumner T, Orton RJ, Green DM, Kao RR, Gubbins S. Quantifying the roles of host movement and vector dispersal in the transmission of vector-borne diseases of livestock. PLoS Comput Biol 2017; 13:e1005470. [PMID: 28369082 PMCID: PMC5393902 DOI: 10.1371/journal.pcbi.1005470] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/17/2017] [Accepted: 03/20/2017] [Indexed: 12/05/2022] Open
Abstract
The role of host movement in the spread of vector-borne diseases of livestock has been little studied. Here we develop a mathematical framework that allows us to disentangle and quantify the roles of vector dispersal and livestock movement in transmission between farms. We apply this framework to outbreaks of bluetongue virus (BTV) and Schmallenberg virus (SBV) in Great Britain, both of which are spread by Culicoides biting midges and have recently emerged in northern Europe. For BTV we estimate parameters by fitting the model to outbreak data using approximate Bayesian computation, while for SBV we use previously derived estimates. We find that around 90% of transmission of BTV between farms is a result of vector dispersal, while for SBV this proportion is 98%. This difference is a consequence of higher vector competence and shorter duration of viraemia for SBV compared with BTV. For both viruses we estimate that the mean number of secondary infections per infected farm is greater than one for vector dispersal, but below one for livestock movements. Although livestock movements account for a small proportion of transmission and cannot sustain an outbreak on their own, they play an important role in establishing new foci of infection. However, the impact of restricting livestock movements on the spread of both viruses depends critically on assumptions made about the distances over which vector dispersal occurs. If vector dispersal occurs primarily at a local scale (99% of transmission occurs <25 km), movement restrictions are predicted to be effective at reducing spread, but if dispersal occurs frequently over longer distances (99% of transmission occurs <50 km) they are not. Diseases which are transmitted by the bites of insects can be spread to new locations through the movement of both infected insects and infected hosts. The importance of these routes has implications for disease control, because we can often restrict host movement, and so potentially reduce spread, but cannot easily restrict insect movements. Despite this, the importance of host movements has been little studied. Here we develop a mathematical model which allows us to disentangle and quantify transmission by insect dispersal and by host movement. We apply the model to two diseases of cattle and sheep transmitted by biting midges that have emerged in northern Europe in the past decade, bluetongue virus (BTV) and Schmallenberg virus (SBV). For both viruses, we show insect movements account for a majority of spread between farms. Although they cannot sustain an epidemic on their own, animal movements play an important role in introducing disease to new areas.
Collapse
Affiliation(s)
- Tom Sumner
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Richard J. Orton
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Darren M. Green
- Institute of Aquaculture, University of Stirling, Stirling, Stirlingshire, United Kingdom
| | - Rowland R. Kao
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon Gubbins
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Özkan Ş, Vitali A, Lacetera N, Amon B, Bannink A, Bartley DJ, Blanco-Penedo I, de Haas Y, Dufrasne I, Elliott J, Eory V, Fox NJ, Garnsworthy PC, Gengler N, Hammami H, Kyriazakis I, Leclère D, Lessire F, Macleod M, Robinson TP, Ruete A, Sandars DL, Shrestha S, Stott AW, Twardy S, Vanrobays ML, Ahmadi BV, Weindl I, Wheelhouse N, Williams AG, Williams HW, Wilson AJ, Østergaard S, Kipling RP. Challenges and priorities for modelling livestock health and pathogens in the context of climate change. ENVIRONMENTAL RESEARCH 2016; 151:130-144. [PMID: 27475053 DOI: 10.1016/j.envres.2016.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
Climate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential adaptation strategies, to support decision making for more efficient, resilient and sustainable production. However, a coherent set of challenges and research priorities for modelling livestock health and pathogens under climate change has not previously been available. To identify such challenges and priorities, researchers from across Europe were engaged in a horizon-scanning study, involving workshop and questionnaire based exercises and focussed literature reviews. Eighteen key challenges were identified and grouped into six categories based on subject-specific and capacity building requirements. Across a number of challenges, the need for inventories relating model types to different applications (e.g. the pathogen species, region, scale of focus and purpose to which they can be applied) was identified, in order to identify gaps in capability in relation to the impacts of climate change on animal health. The need for collaboration and learning across disciplines was highlighted in several challenges, e.g. to better understand and model complex ecological interactions between pathogens, vectors, wildlife hosts and livestock in the context of climate change. Collaboration between socio-economic and biophysical disciplines was seen as important for better engagement with stakeholders and for improved modelling of the costs and benefits of poor livestock health. The need for more comprehensive validation of empirical relationships, for harmonising terminology and measurements, and for building capacity for under-researched nations, systems and health problems indicated the importance of joined up approaches across nations. The challenges and priorities identified can help focus the development of modelling capacity and future research structures in this vital field. Well-funded networks capable of managing the long-term development of shared resources are required in order to create a cohesive modelling community equipped to tackle the complex challenges of climate change.
Collapse
Affiliation(s)
- Şeyda Özkan
- Department of Animal and Aquacultural Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences (NMBU), Post Box 5003, Ås 1430, Norway
| | - Andrea Vitali
- University of Tuscia, Department of Agriculture and Forestry Science (DAFNE), Via San Camillo De Lellis, snc, Viterbo 01100, Italy
| | - Nicola Lacetera
- University of Tuscia, Department of Agriculture and Forestry Science (DAFNE), Via San Camillo De Lellis, snc, Viterbo 01100, Italy
| | - Barbara Amon
- Leibniz Institute for Agricultural Engineering Potsdam-Bornim (ATB), Max-Eyth-Allee 100, Potsdam 14469, Germany
| | - André Bannink
- Wageningen UR Livestock Research, P.O. Box 338, Wageningen 6700 AH, The Netherlands
| | - Dave J Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Isabel Blanco-Penedo
- Animal Welfare Subprogram, IRTA, Veinat de Sies s/n, Monells, Girona 17121, Spain
| | - Yvette de Haas
- Wageningen UR Livestock Research, P.O. Box 338, Wageningen 6700 AH, The Netherlands
| | - Isabelle Dufrasne
- Nutrition Unit, Animal Production Department, Veterinary Faculty, University of Liège, Boulevard de Colonster 20, Bât. B43, Liège 4000, Belgium
| | - John Elliott
- ADAS UK Ltd, 4205 Park Approach, Thorpe Park, Leeds LS15 8GB, UK
| | - Vera Eory
- Scotland's Rural College (SRUC), Peter Wilson Building, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Naomi J Fox
- Scotland's Rural College (SRUC), Animal and Veterinary Sciences, Roslin Institute Building, Easter Bush, Midlothian EH25 9RG, UK
| | - Phil C Garnsworthy
- University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Nicolas Gengler
- Agriculture, Bio-engineering and Chemistry Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Gembloux B-5030, Belgium
| | - Hedi Hammami
- Agriculture, Bio-engineering and Chemistry Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Gembloux B-5030, Belgium
| | - Ilias Kyriazakis
- School of Agriculture, Food and Rural Development, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, UK
| | - David Leclère
- Ecosystems Services and Management program (ESM), International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg A-2361, Austria
| | - Françoise Lessire
- Nutrition Unit, Animal Production Department, Veterinary Faculty, University of Liège, Boulevard de Colonster 20, Bât. B43, Liège 4000, Belgium
| | - Michael Macleod
- Scotland's Rural College (SRUC), Peter Wilson Building, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Timothy P Robinson
- Livestock Systems and Environment, International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
| | - Alejandro Ruete
- Department of Ecology, Swedish University of Agricultural Sciences, Ullsvägen 16, Uppsala 75007, Sweden
| | - Daniel L Sandars
- School of Energy, Environment and Agrifood, Cranfield University, Bedford MK43 0AL, UK
| | - Shailesh Shrestha
- Scotland's Rural College (SRUC), Peter Wilson Building, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Alistair W Stott
- Scotland's Rural College (SRUC), Peter Wilson Building, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Stanislaw Twardy
- Institute of Technology and Life Sciences at Falenty (P122) Malopolska Research Centre in Krakow, ul. Ulanow 21B, 31-450 Krakow, Poland
| | - Marie-Laure Vanrobays
- Agriculture, Bio-engineering and Chemistry Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Gembloux B-5030, Belgium
| | - Bouda Vosough Ahmadi
- Scotland's Rural College (SRUC), Peter Wilson Building, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Isabelle Weindl
- Leibniz Institute for Agricultural Engineering Potsdam-Bornim (ATB), Max-Eyth-Allee 100, Potsdam 14469, Germany; Potsdam Institute for Climate Impact Research (PIK), PO Box 60 12 03, 14412 Potsdam, Germany
| | - Nick Wheelhouse
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Adrian G Williams
- School of Energy, Environment and Agrifood, Cranfield University, Bedford MK43 0AL, UK
| | - Hefin W Williams
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, 1st Floor, Stapledon Building, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EE, UK
| | | | - Søren Østergaard
- Department of Animal Science, Aarhus University, Tjele 8830, Denmark
| | - Richard P Kipling
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, 1st Floor, Stapledon Building, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EE, UK.
| |
Collapse
|
13
|
Martinelle L, Poskin A, Dal Pozzo F, De Regge N, Cay B, Saegerman C. Experimental Infection of Sheep at 45 and 60 Days of Gestation with Schmallenberg Virus Readily Led to Placental Colonization without Causing Congenital Malformations. PLoS One 2015; 10:e0139375. [PMID: 26418420 PMCID: PMC4587791 DOI: 10.1371/journal.pone.0139375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Main impact of Schmallenberg virus (SBV) on livestock consists in reproductive disorders, with teratogenic effects, abortions and stillbirths. SBV pathogenesis and viral placental crossing remain currently poorly understood. Therefore, we implemented an experimental infection of ewes, inoculated with SBV at 45 or 60 days of gestation (dg). METHODOLOGY "Mourerous" breed ewes were randomly separated in three groups: eight and nine ewes were subcutaneously inoculated with 1 ml of SBV infectious serum at 45 and 60 dg, respectively (G45 and G60). Six other ewes were inoculated subcutaneously with sterile phosphate buffer saline as control group. All SBV inoculated ewes showed RNAemia consistent with previously published studies, they seroconverted and no clinical sign was reported. Lambs were born at term via caesarian-section, and right after birth they were blood sampled and clinically examined. Then both lambs and ewes were euthanatized and necropsied. PRINCIPAL FINDINGS/SIGNIFICANCE No lambs showed any malformation suggestive of SBV infection and none of them had RNAemia or anti-SBV antibodies prior to colostrum uptake. Positive SBV RNA detection in organs was rare in both G45 and G60 lambs (2/11 and 1/10, respectively). Nevertheless most of the lambs in G45 (9/11) and G60 (9/10) had at least one extraembryonic structure SBV positive by RTqPCR. The number of positive extraembryonic structures was significantly higher in G60 lambs. Time of inoculation (45 or 60 dg) had no impact on the placental colonization success rate but affected the frequency of detecting the virus in the offspring extraembryonic structures by the time of lambing. SBV readily colonized the placenta when ewes were infected at 45 or 60 dg but infection of the fetuses was limited and did not lead to congenital malformations.
Collapse
Affiliation(s)
- Ludovic Martinelle
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- * E-mail:
| | - Antoine Poskin
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Operational Directorate Viral Diseases, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium
| | - Fabiana Dal Pozzo
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nick De Regge
- Operational Directorate Viral Diseases, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium
| | - Brigitte Cay
- Operational Directorate Viral Diseases, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
14
|
Productive and reproductive performances of dairy cattle herds in Treviso province, Italy (2009-2012): an assessment of the potential impact of Schmallenberg virus epidemic. BMC Vet Res 2015; 11:193. [PMID: 26260563 PMCID: PMC4531501 DOI: 10.1186/s12917-015-0527-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 08/04/2015] [Indexed: 11/28/2022] Open
Abstract
Background Schmallenberg virus (SBV) has spread across Europe since mid-2011, causing unspecific and transitory symptoms in ruminants and congenital malformations in their offspring. Evidence for the impact of SBV on cattle (re)productive performance is limited. Using a comprehensive data set from a SBV-affected province in North-East Italy, this study aimed at assessing the potential impact of SBV emergence on 11 productive and reproductive performance indicators of dairy cattle herds, accounting for weather conditions and other herd-level factors that could also influence these indicators. Results A total of 127 farms with an average of 71 cows per farm (range 29–496) were monitored monthly from January 2009 to June 2012. Mixed-effects linear models for longitudinal data were used to assess the average variation in herds’ performance indicators over semesters (Jan-Jun 2009, Jul-Dec 2009, Jan-Jun 2010, Jul-Dec 2010, Jan-Jun 2011, Jul-Dec 2011, Jan-Jun 2012) and trimesters therein. Taking the second semester of 2011 as reference, significant decreases in the average lactation length (−6 days, on average) and calving-to-conception interval (−4 days, on average) were observed relative to the same semesters of the years 2010 and 2009, respectively. Similarly, during the last trimester of 2011, which is most likely to cover the SBV infection period in the study area, there was an average decrease of −4 days (lactation length) and −7 days (calving-to-conception interval) compared to the same trimesters of the years 2010 and 2009, respectively. However, the observed decreases actually represent a positive outcome that is not as such imputable to SBV emergence, but rather reflects other beneficial changes in farm management. None of the other indicators showed significant variations, confirming the relatively mild expression of SBV infection in cattle. Conclusions Although the emergence of SBV might have significantly affected the (re)productive performance of some individual farms, we concluded that overall at the province level there were no significant variations attributable to SBV, at least not in a way that would lead to negative effects on farm profitability. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0527-1) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
|
16
|
|
17
|
Impact of temperature, feeding preference and vaccination on Schmallenberg virus transmission in Scotland. Sci Rep 2014; 4:5746. [PMID: 25034464 PMCID: PMC4102919 DOI: 10.1038/srep05746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/01/2014] [Indexed: 11/17/2022] Open
Abstract
First identified in 2011, Schmallenberg virus (SBV) is principally transmitted by Culicoides midges and affects ruminants. Clinical presentation is typified by foetal abnormalities, but despite very high infection rates, relatively few animals present with clinical signs. In this paper we further develop a previously published stochastic mathematical model of SBV spread to investigate the optimal deployment of a vaccine for SBV in Scotland, a country that has experienced only sporadic and isolated cases of SBV. We consider the use of the vaccine under different temperatures and explore the effects of a vector preference for feeding on cattle. We demonstrate that vaccine impact is optimised by targeting it at the high risk areas in the south of Scotland, or vaccinating only cattle. At higher than average temperatures, and hence increased transmission potential, the relative impact of vaccination is considerably enhanced. Vaccine impact is also enhanced if vectors feed preferentially on cattle. These findings are of considerable importance when planning control strategies for SBV and also have important implications for management of other arboviruses such as Bluetongue virus. Environmental determinants and feeding preferences should be researched further to inform development of effective control strategies.
Collapse
|
18
|
|