1
|
Bansal G, Ghanem M, Sears KT, Galen JE, Tennant SM. Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. EcoSal Plus 2024:eesp00042023. [PMID: 39023252 DOI: 10.1128/ecosalplus.esp-0004-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Salmonella enterica is a diverse species that infects both humans and animals. S. enterica subspecies enterica consists of more than 1,500 serovars. Unlike typhoidal Salmonella serovars which are human host-restricted, non-typhoidal Salmonella (NTS) serovars are associated with foodborne illnesses worldwide and are transmitted via the food chain. Additionally, NTS serovars can cause disease in livestock animals causing significant economic losses. Salmonella is a well-studied model organism that is easy to manipulate and evaluate in animal models of infection. Advances in genetic engineering approaches in recent years have led to the development of Salmonella vaccines for both humans and animals. In this review, we focus on current progress of recombinant live-attenuated Salmonella vaccines, their use as a source of antigens for parenteral vaccines, their use as live-vector vaccines to deliver foreign antigens, and their use as therapeutic cancer vaccines in humans. We also describe development of live-attenuated Salmonella vaccines and live-vector vaccines for use in animals.
Collapse
Affiliation(s)
- Garima Bansal
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mostafa Ghanem
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Khandra T Sears
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James E Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Barbosa JA, Yang CT, Finatto AN, Cantarelli VS, de Oliveira Costa M. T-independent B-cell effect of agents associated with swine grower-finisher diarrhea. Vet Res Commun 2024; 48:991-1001. [PMID: 38044397 DOI: 10.1007/s11259-023-10257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Swine dysentery, spirochetal colitis, and salmonellosis are production-limiting enteric diseases of global importance to the swine industry. Despite decades of efforts, mitigation of these diseases still relies on antibiotic therapy. A common knowledge gap among the 3 agents is the early B-cell response to infection in pigs. Thus, this study aimed to characterize the porcine B-cell response to Brachyspira hyodysenteriae, Brachyspira hampsonii (virulent and avirulent strains), Brachyspira pilosicoli, and Salmonella Typhimurium, the agents of the syndromes mentioned above. Immortalized porcine B-cell line derived from a crossbred pig with lymphoma were co-incubated for 8 h with each pathogen, as well as E. coli lipopolysaccharide (LPS) and a sham-inoculum (n = 3/treatment). B-cell viability following treatments was evaluated using trypan blue, and the expression levels of B-cell activation-related genes was profiled using reverse transcription quantitative PCR. Only S. Typhimurium and LPS led to increased B-cell mortality. B. pilosicoli downregulated B-lymphocyte antigen (CD19), spleen associated tyrosine Kinase (syk), tyrosine-protein kinase (lyn), and Tumour Necrosis Factor alpha (TNF-α), and elicited no change in immunoglobulin-associated beta (CD79b) and swine leukocyte antigen class II (SLA-DRA) expression levels, when compared to the sham-inoculated group. In contrast, all other treatments significantly upregulated CD79b and stimulated responses in other B-cell downstream genes. These findings suggest that B. pilosicoli does not elicit an immediate T-independent B-cell response, nor does it trigger antigen-presenting mechanisms. All other agents activated at least one trigger within the T-independent pathways, as well as peptide antigen presenting mechanisms. Future research is warranted to verify these findings in vivo.
Collapse
Affiliation(s)
- Jéssica A Barbosa
- Animal Science Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Christine T Yang
- Department of Integrated Sciences, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Arthur N Finatto
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Vinícius S Cantarelli
- Animal Science Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Matheus de Oliveira Costa
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Menegatt JCO, Almeida BA, Perosa FF, Castro LT, Gris AH, Piva MM, Silva EMS, Pavarini SP, Driemeier D. Septicemic salmonellosis in suckling piglets resulting from improper intramuscular administration of an oral vaccine. J Vet Diagn Invest 2024; 36:278-282. [PMID: 38336609 DOI: 10.1177/10406387231221115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024] Open
Abstract
We describe an unusual outbreak of mortality in suckling piglets following the misadministration of an oral vaccine against Salmonella Typhimurium and Salmonella Choleraesuis. Within 3-48 h of vaccination of a batch of ~700 piglets, ~300 developed marked swelling in the dorsal neck region, respiratory distress, fever, recumbency, and apathy. In total, ~100 died, and 4 were submitted for autopsy. Gross and microscopic lesions consisted of focally extensive areas of purple discoloration in the skin of the cervical region, associated with edema and hemorrhage in the subcutis and muscles. Additionally, there was interstitial pneumonia with marked interlobular edema and mild fibrinous pleuritis. Aerobic bacterial culture identified Salmonella Typhimurium (3 cases) and Salmonella Choleraesuis (1 case) in samples of skeletal muscle and lung and from pleural swab samples. Marked immunostaining against Salmonella spp. was observed in the skeletal muscle of the cervical region, as well as in blood vessels and macrophages from the lung, liver, spleen, and kidney. We concluded that inappropriate intramuscular administration of an oral vaccine against Salmonella resulted in septicemia and death in a batch of piglets.
Collapse
Affiliation(s)
- Jean C O Menegatt
- Faculdade de Veterinária, Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Bruno A Almeida
- Faculdade de Veterinária, Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Fernanda F Perosa
- Faculdade de Veterinária, Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Lucas T Castro
- Faculdade de Veterinária, Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Anderson H Gris
- Faculdade de Veterinária, Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Manoela M Piva
- Faculdade de Veterinária, Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Emanoelly M S Silva
- Faculdade de Veterinária, Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Saulo P Pavarini
- Faculdade de Veterinária, Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - David Driemeier
- Faculdade de Veterinária, Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Mkangara M. Prevention and Control of Human Salmonella enterica Infections: An Implication in Food Safety. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:8899596. [PMID: 37727836 PMCID: PMC10506869 DOI: 10.1155/2023/8899596] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Salmonella is a foodborne zoonotic pathogen causing diarrhoeal disease to humans after consuming contaminated water, animal, and plant products. The bacterium is the third leading cause of human death among diarrhoeal diseases worldwide. Therefore, human salmonellosis is of public health concern demanding integrated interventions against the causative agent, Salmonella enterica. The prevention of salmonellosis in humans is intricate due to several factors, including an immune-stable individual infected with S. enterica continuing to shed live bacteria without showing any clinical signs. Similarly, the asymptomatic Salmonella animals are the source of salmonellosis in humans after consuming contaminated food products. Furthermore, the contaminated products of plant and animal origin are a menace in food industries due to Salmonella biofilms, which enhance colonization, persistence, and survival of bacteria on equipment. The contaminated food products resulting from bacteria on equipment offset the economic competition of food industries and partner institutions in international business. The most worldwide prevalent broad-range Salmonella serovars affecting humans are Salmonella Typhimurium and Salmonella Enteritidis, and poultry products, among others, are the primary source of infection. The broader range of Salmonella serovars creates concern over multiple strategies for preventing and controlling Salmonella contamination in foods to enhance food safety for humans. Among the strategies for preventing and controlling Salmonella spread in animal and plant products include biosecurity measures, isolation and quarantine, epidemiological surveillance, farming systems, herbs and spices, and vaccination. Other measures are the application of phages, probiotics, prebiotics, and nanoparticles reduced and capped with antimicrobial agents. Therefore, Salmonella-free products, such as beef, pork, poultry meat, eggs, milk, and plant foods, such as vegetables and fruits, will prevent humans from Salmonella infection. This review explains Salmonella infection in humans caused by consuming contaminated foods and the interventions against Salmonella contamination in foods to enhance food safety and quality for humans.
Collapse
Affiliation(s)
- Mwanaisha Mkangara
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, P.O. Box 2958, Dar es Salaam, Tanzania
| |
Collapse
|
5
|
Sock and Environmental Swabs as an Efficient, Non-Invasive Tool to Assess the Salmonella Status of Sow Farms. Animals (Basel) 2023; 13:ani13061031. [PMID: 36978572 PMCID: PMC10044664 DOI: 10.3390/ani13061031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Salmonellosis is the second most reported gastrointestinal infection in humans after campylobacteriosis and a common cause of foodborne outbreaks in the European Union (EU). In addition to consumption of contaminated animal-based foods, such as poultry, beef and eggs, pork is an important source of human salmonellosis outbreaks; therefore, Salmonella (S.) control should start in the early stages of pig production. To be able to implement effective control measures to reduce the risk of pigs being infected by Salmonella, it is important to identify the serovars circulating on farm within the different stages of production, including as early as sow and piglet breeding. The aim of the present study was to assess the Salmonella status of sow farms either producing their own finishers or delivering piglets to fattening farms with a known high serological prevalence identified within the QS Salmonella monitoring system. Overall, 97 (92.4%) of 105 investigated piglet-producing farms across Germany tested positive in at least one sample. Salmonella was detected in 38.2% of the sock and 27.1% of the environmental swab samples. S. Typhimurium was the most frequent serovar. In conclusion, sock and environmental swab samples are well suited for non-invasive Salmonella detection in different production units in farrowing farms. To establish a holistic Salmonella control program, all age classes of pig production should be sampled to enable intervention and implementation of countermeasures at an early stage if necessary.
Collapse
|
6
|
Bearson SMD. Salmonella in Swine: Prevalence, Multidrug Resistance, and Vaccination Strategies. Annu Rev Anim Biosci 2021; 10:373-393. [PMID: 34699256 DOI: 10.1146/annurev-animal-013120-043304] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An estimated 1.3 million Salmonella infections and 420 deaths occur annually in the United States, with an estimated economic burden of $3.7 billion. More than 50% of US swine operations test positive for Salmonella according to the National Animal Health Monitoring System, and 20% of Salmonella from swine are multidrug resistant (resistant to ≥3 antimicrobial classes) as reported by the National Antimicrobial Resistance Monitoring System. This review on Salmonella in swine addresses the current status of these topics by discussing antimicrobial resistance and metal tolerance in Salmonella and the contribution of horizontal gene transfer. A major challenge in controlling Salmonella is that Salmonella is a foodborne pathogen in humans but is often a commensal in food animals and thereby establishes an asymptomatic reservoir state in such animals, including swine. As food animal production systems continue to expand and antimicrobial usage becomes more limited, the need for Salmonella interventions has intensified. A promising mitigation strategy is vaccination against Salmonella in swine to limit animal, environmental, and food contamination. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shawn M D Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Center, US Department of Agriculture, Ames, Iowa, USA;
| |
Collapse
|
7
|
A Systematic Review on the Effectiveness of Pre-Harvest Meat Safety Interventions in Pig Herds to Control Salmonella and Other Foodborne Pathogens. Microorganisms 2021; 9:microorganisms9091825. [PMID: 34576721 PMCID: PMC8466550 DOI: 10.3390/microorganisms9091825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
This systematic review aimed to assess the effectiveness of pre-harvest interventions to control the main foodborne pathogens in pork in the European Union. A total of 1180 studies were retrieved from PubMed® and Web of Science for 15 pathogens identified as relevant in EFSA's scientific opinion on the public health hazards related to pork (2011). The study selection focused on controlled studies where a cause-effect could be attributed to the interventions tested, and their effectiveness could be inferred. Altogether, 52 studies published from 1983 to 2020 regarding Campylobacter spp., Clostridium perfringens, Methicillin-resistant Staphylococcus aureus, Mycobacterium avium, and Salmonella spp. were retained and analysed. Research was mostly focused on Salmonella (n = 43 studies). In-feed and/or water treatments, and vaccination were the most tested interventions and were, overall, successful. However, the previously agreed criteria for this systematic review excluded other effective interventions to control Salmonella and other pathogens, like Yersinia enterocolitica, which is one of the most relevant biological hazards in pork. Examples of such successful interventions are the Specific Pathogen Free herd principle, stamping out and repopulating with disease-free animals. Research on other pathogens (i.e., Hepatitis E, Trichinella spiralis and Toxoplasma gondii) was scarce, with publications focusing on epidemiology, risk factors and/or observational studies. Overall, high herd health coupled with good management and biosecurity were effective to control or prevent most foodborne pathogens in pork at the pre-harvest level.
Collapse
|
8
|
Barbosa JA, Rodrigues LA, Columbus DA, Aguirre JCP, Harding JCS, Cantarelli VS, Costa MDO. Experimental infectious challenge in pigs leads to elevated fecal calprotectin levels following colitis, but not enteritis. Porcine Health Manag 2021; 7:48. [PMID: 34429170 PMCID: PMC8383374 DOI: 10.1186/s40813-021-00228-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fecal calprotectin is largely applied as a non-invasive intestinal inflammation biomarker in human medicine. Previous studies in pigs investigated the levels of fecal calprotectin in healthy animals only. Thus, there is a knowledge gap regarding its application during infectious diarrhea. This study investigated the usefulness of fecal calprotectin as a biomarker of intestinal inflammation in Brachyspira hyodysenteriae and Salmonella Typhimurium infected pigs. RESULTS Fecal samples from pigs with colitis (n = 18) were collected from animals experimentally inoculated with B. hyodysenteriae (n = 8) or from sham-inoculated controls (n = 3). Fecal samples from pigs with enteritis (n = 14) were collected from animals inoculated with Salmonella enterica serovar Typhimurium (n = 8) or from sham-inoculated controls (n = 4). For both groups, fecal samples were scored as: 0 = normal; 1 = soft, wet cement; 2 = watery feces; 3 = mucoid diarrhea; and 4 = bloody diarrhea. Fecal calprotectin levels were assayed using a sandwich ELISA, a turbidimetric immunoassay and a point-of-care dipstick test. Fecal calprotectin levels were greater in colitis samples scoring 4 versus ≤ 4 using ELISA, and in feces scoring 3 and 4 versus ≤ 1 using immunoturbidimetry (P < 0.05). No differences were found in calprotectin concentration among fecal scores for enteritis samples, regardless of the assay used. All samples were found below detection limits using the dipstick method. CONCLUSIONS Fecal calprotectin levels are increased following the development of colitis, but do not significantly change due to enteritis. While practical, the use of commercially available human kits present sensitivity limitations. Further studies are needed to validate the field application of calprotectin as a marker of intestinal inflammation.
Collapse
Affiliation(s)
- Jéssica A Barbosa
- Animal Science Department, Federal University of Lavras, Lavras, Minas Gerais, 37200-000, Brazil
| | - Lucas A Rodrigues
- Prairie Swine Centre, Inc., 2105 - 8th Street East, PO Box 21057, Saskatoon, SK, S7H 5N9, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Dr, Saskatoon, SK, S7N 5A8, Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., 2105 - 8th Street East, PO Box 21057, Saskatoon, SK, S7H 5N9, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Dr, Saskatoon, SK, S7N 5A8, Canada
| | - Juan C P Aguirre
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada
| | - Vinícius S Cantarelli
- Animal Science Department, Federal University of Lavras, Lavras, Minas Gerais, 37200-000, Brazil
| | - Matheus de O Costa
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada.
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, 3584 CL, The Netherlands.
| |
Collapse
|
9
|
T-Cell Cytokine Response in Salmonella Typhimurium-Vaccinated versus Infected Pigs. Vaccines (Basel) 2021; 9:vaccines9080845. [PMID: 34451970 PMCID: PMC8402558 DOI: 10.3390/vaccines9080845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Vaccination with the live attenuated vaccine Salmoporc is an effective measure to control Salmonella Typhimurium (STM) in affected swine populations. However, the cellular immune response evoked by the Salmoporc vaccine including differences in vaccinated pigs versus non-vaccinated pigs upon STM infection have not been characterized yet. To investigate this, tissue-derived porcine lymphocytes from different treatment groups (vaccination-only, vaccination and infection, infection-only, untreated controls) were stimulated in vitro with heat-inactivated STM and abundances of IFN-γ, TNF-α and/or IL-17A-producing T-cell subsets were compared across organs and treatment groups. Overall, our results show the induction of a strong CD4+ T-cell response after STM infection, both locally and systemically. Low-level induction of STM-specific cytokine-producing CD4+ T cells, notably for the IFN-γ/TNF-α co-producing phenotype, was detected after vaccination-only. Numerous significant contrasts in cytokine-producing T-cell phenotypes were observed after infection in vaccinated and infected versus infected-only animals. These results suggest that vaccine-induced STM-specific cytokine-producing CD4+ T cells contribute to local immunity in the gut and may limit the spread of STM to lymph nodes and systemic organs. Hence, our study provides insights into the underlying immune mechanisms that account for the efficacy of the Salmoporc vaccine.
Collapse
|
10
|
van der Wolf P, Meijerink M, Libbrecht E, Tacken G, Gijsen E, Lillie-Jaschniski K, Schüller V. Salmonella Typhimurium environmental reduction in a farrow-to-finish pig herd using a live attenuated Salmonella Typhimurium vaccine. Porcine Health Manag 2021; 7:43. [PMID: 34301340 PMCID: PMC8299633 DOI: 10.1186/s40813-021-00222-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/03/2021] [Indexed: 01/27/2023] Open
Abstract
Background Salmonella Typhimurium is an important zoonotic pathogen in pigs, that can cause clinical disease. Many sow herds and finishing herds are infected with Salmonella, and therefore pose a threat for the contamination of pork and pork products and ultimately consumers. Case presentation This case study describes a farrow-to-finish pig herd, producing its own replacement gilts, which had experienced clinical outbreaks of salmonellosis since 2002. Outbreaks were characterised by profuse diarrhoea, dead pigs and high antimicrobial use (colistin sulphate). The aim of this study was to see whether using vaccination of sows and piglets with Salmoporc®, a live attenuated Salmonella Typhimurium vaccine, in combination with standard hygienic precautions, it was possible to reduce Salmonella Typhimurium to below the bacteriological detection limit. Monitoring of the presence of Salmonella was done using a total of 20 pooled faecal, sock and dust samples per herd visit in the period from September 2016 to October 2020. Within the first 10 months after the start of vaccination in August 2016, there was a rapid reduction in clinical symptoms, antimicrobial usage and the number of Salmonella-positive samples. During the winters of 2017/2018 and 2018/2019 the number of positive samples increased again, however with minimal need to use antimicrobials to treat the affected animals. In July 2019, only two samples from a corridor were positive. In September and November 2019 and in October 2020 all three samplings were completely negative for S. Typhimurium. Conclusions This case, together with other longitudinal studies, can be seen as a proof of the principle that long term vaccination with a live attenuated S. Typhimurium vaccine can reduce the level of S. Typhimurium in the herd environment to very low levels within a farrow-to-finish herd initially suffering from clinical salmonellosis. Also, clinical symptoms indicating salmonellosis were no longer observed and antimicrobials to treat clinically diseased pigs were no longer needed.
Collapse
Affiliation(s)
| | | | | | - Gerrit Tacken
- Veterinary Practice "VarkensArtsenZuid", Panningen, The Netherlands
| | - Emile Gijsen
- Veterinary Practice "VarkensArtsenZuid", Panningen, The Netherlands
| | | | | |
Collapse
|
11
|
Schmidt S, Sassu EL, Vatzia E, Pierron A, Lagler J, Mair KH, Stadler M, Knecht C, Spergser J, Dolezal M, Springer S, Theuß T, Fachinger V, Ladinig A, Saalmüller A, Gerner W. Vaccination and Infection of Swine With Salmonella Typhimurium Induces a Systemic and Local Multifunctional CD4 + T-Cell Response. Front Immunol 2021; 11:603089. [PMID: 33584671 PMCID: PMC7874209 DOI: 10.3389/fimmu.2020.603089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/25/2020] [Indexed: 01/14/2023] Open
Abstract
The gram-negative facultative intracellular bacteria Salmonella Typhimurium (STM) often leads to subclinical infections in pigs, but can also cause severe enterocolitis in this species. Due to its high zoonotic potential, the pathogen is likewise dangerous for humans. Vaccination with a live attenuated STM strain (Salmoporc) is regarded as an effective method to control STM infections in affected pig herds. However, information on the cellular immune response of swine against STM is still scarce. In this study, we investigated the T-cell immune response in pigs that were vaccinated twice with Salmoporc followed by a challenge infection with a virulent STM strain. Blood- and organ-derived lymphocytes (spleen, tonsils, jejunal and ileocolic lymph nodes, jejunum, ileum) were stimulated in vitro with heat-inactivated STM. Subsequently, CD4+ T cells present in these cell preparations were analyzed for the production of IFN-γ, TNF-α, and IL-17A by flow cytometry and Boolean gating. Highest frequencies of STM-specific cytokine-producing CD4+ T cells were found in lamina propria lymphocytes of jejunum and ileum. Significant differences of the relative abundance of cytokine-producing phenotypes between control group and vaccinated + infected animals were detected in most organs, but dominated in gut and lymph node-residing CD4+ T cells. IL-17A producing CD4+ T cells dominated in gut and gut-draining lymph nodes, whereas IFN-γ/TNF-α co-producing CD4+ T cells were present in all locations. Additionally, the majority of cytokine-producing CD4+ T cells had a CD8α+CD27- phenotype, indicative of a late effector or effector memory stage of differentiation. In summary, we show that Salmonella-specific multifunctional CD4+ T cells exist in vaccinated and infected pigs, dominate in the gut and most likely contribute to protective immunity against STM in the pig.
Collapse
Affiliation(s)
- Selma Schmidt
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Elena L Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Eleni Vatzia
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Alix Pierron
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Julia Lagler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.,Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Kerstin H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Christian Knecht
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Tobias Theuß
- Ceva Innovation Center GmbH, Dessau-Roßlau, Germany
| | | | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|