1
|
Ali S, Mushtaq A, Hassan L, Syed MA, Foster JT, Dadar M. Molecular epidemiology of brucellosis in Asia: insights from genotyping analyses. Vet Res Commun 2024; 48:3533-3550. [PMID: 39230771 DOI: 10.1007/s11259-024-10519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Brucellosis infects humans and animals worldwide but is particularly prevalent in Asia. In many Asian countries, molecular diagnostic tools for accurate molecular diagnostics and molecular epidemiology are lacking. Nonetheless, some countries have conducted in-depth molecular epidemiological studies. The objective of this study was to reveal the genetic relationships, geographic origins, and distributions of Brucella strains across Asia for two primary species, B. abortus and B. melitensis. For this, we systematically searched genotyping data from published studies on the molecular epidemiology of Brucella species for both humans and livestock in Asia. We used data from multilocus sequence typing (MLST), multiple-locus variable-number tandem repeat analysis (MLVA), and whole genome sequencing analysis of Brucella strains. We also analyzed the MLVA genotypes of 129 B. abortus isolates and 242 B. melitensis isolates with known origins in Asia from an online MLVA database using MLVA-11 data in minimum spanning trees and MLVA-16 data in neighbor-joining trees. We found that the B. melitensis East Mediterranean lineage is predominant across the continent, with only a small number of samples from the Africa and Americas lineages, and none from the West Mediterranean lineage. The "abortus C" genotype was the most common group of B. abortus in Asia, with limited genetic variation for this species. Several studies also reported that Near Eastern countries frequently encounter human brucellosis cases of B. abortus from genotypes 42 and 43. Our study highlights the inconsistent collection of genetic data for Brucella species across Asia and a need for more extensive sampling in most countries. Finally, a consistent nomenclature is necessary to define various groupings of strains within a lineage (i.e., clade) so uniform terminology should denote particular genetic groups that are understood by all researchers.
Collapse
Affiliation(s)
- Shahzad Ali
- Wildlife Epidemiology and Molecular Microbiology Laboratory (One Health Research Group), Discipline of Zoology, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Ravi Campus, Pattoki, Pakistan.
| | - Areeba Mushtaq
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Laiba Hassan
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Muhammad Ali Syed
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Maryam Dadar
- Brucellosis Department, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
2
|
Xue H, Li J, Ma L, Yang X, Ren L, Zhao Z, Wang J, Zhao Y, Zhao Z, Zhang X, Liu Z, Li Z. Seroprevalence and Molecular Characterization of Brucella abortus from the Himalayan Marmot in Qinghai, China. Infect Drug Resist 2023; 16:7721-7734. [PMID: 38144222 PMCID: PMC10749113 DOI: 10.2147/idr.s436950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023] Open
Abstract
Objective Brucellosis is a serious public health issue in Qinghai (QH), China. Surveying the seroprevalence and isolation of B. abortus strains from marmots is key to understanding the role of wildlife in the maintenance and spread of brucellosis. Methods In this study, a set of methods, including a serology survey, bacteriology, antibiotic susceptibility, molecular genotyping (MLST and MLVA), and genome sequencing, were employed to characterize the two B. abortus strains. Results The seroprevalence of brucellosis in marmots was 7.0% (80/1146) by serum tube agglutination test (SAT); one Brucella strain was recovered from these positive samples, and another Brucella strain from a human. Two strains were identified as B. abortus bv. 1 and were susceptible to all eight drugs examined. The distribution patterns of the accessory genes, virulence associated genes, and resistance genes of the two strains were consistent, and there was excellent collinearity between the two strains on chromosome I, but they had significant SVs in chromosome II, including inversions and translocations. MLST genotyping identified two B. abortus strains as ST2, and MLVA-16 analysis showed that the two strains clustered with strains from northern China. WGS-SNP phylogenetic analysis showed that the strains were genetically homogeneous with strains from the northern region, implying that strains from a common lineage were spread continuously in different regions and hosts. Conclusion Seroprevalence and molecular clues demonstrated frequent direct or indirect contact between sheep/goats, cattle, and marmots, implying that wildlife plays a vital role in the maintenance and spread of B. abortus in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Hongmei Xue
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Jiquan Li
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Li Ma
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Xuxin Yang
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Lingling Ren
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Zhijun Zhao
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Jianling Wang
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Yuanbo Zhao
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Zhongzhi Zhao
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Xuefei Zhang
- Department of Brucellosis Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, People’s Republic of China
| | - Zhiguo Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zhenjun Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Moriyón I, Blasco JM, Letesson JJ, De Massis F, Moreno E. Brucellosis and One Health: Inherited and Future Challenges. Microorganisms 2023; 11:2070. [PMID: 37630630 PMCID: PMC10459711 DOI: 10.3390/microorganisms11082070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
One Health is the collaborative efforts of multiple disciplines to attain optimal health for people, animals and the environment, a concept that historically owes much to the study of brucellosis, including recent political and ethical considerations. Brucellosis One Health actors include Public Health and Veterinary Services, microbiologists, medical and veterinary practitioners and breeders. Brucellosis awareness, and the correct use of diagnostic, epidemiological and prophylactic tools is essential. In brucellosis, One Health implementation faces inherited and new challenges, some aggravated by global warming and the intensification of breeding to meet growing food demands. In endemic scenarios, disease awareness, stakeholder sensitization/engagement and the need to build breeder trust are unresolved issues, all made difficult by the protean characteristics of this zoonosis. Extended infrastructural weaknesses, often accentuated by geography and climate, are critically important. Capacity-building faces misconceptions derived from an uncritical adoption of control/eradication strategies applied in countries with suitable means, and requires additional reference laboratories in endemic areas. Challenges for One Health implementation include the lack of research in species other than cattle and small ruminants, the need for a safer small ruminant vaccine, the need to fill in the infrastructure gap, the need for realistic capacity-building, the creation of reference laboratories in critical areas, and the stepwise implementation of measures not directly transposed from the so-called developed countries.
Collapse
Affiliation(s)
- Ignacio Moriyón
- Microbiology and Parasitology Department, Medical School, Universidad de Navarra, 31008 Pamplona, Spain
| | - José María Blasco
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain;
| | - Jean Jacques Letesson
- Research Unit in Biology of Microorganisms, Narilis, University of Namur, 5000 Namur, Belgium;
| | - Fabrizio De Massis
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy;
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
| |
Collapse
|
4
|
da Silva WC, Camargo RNC, da Silva ÉBR, da Silva JAR, Picanço MLR, dos Santos MRP, de Araújo CV, Barbosa AVC, Bonin MDN, de Oliveira AS, Castro SV, Lourenço JDB. Perspectives of economic losses due to condemnation of cattle and buffalo carcasses in the northern region of Brazil. PLoS One 2023; 18:e0285224. [PMID: 37141204 PMCID: PMC10159146 DOI: 10.1371/journal.pone.0285224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
The work aims to study the economical losses of the condemnation of bovine and buffalo carcasses, in order to estimate the losses in animals slaughtered in Santarém-Pará, Brazil, between 2016 and 2018, with data obtained from the Municipal Department of Agriculture and Fisheries. Sex, age, origin, total number of animals slaughtered and causes of condemnation of carcasses were considered. All analyzes were performed in RStudio version 1.1.463. In this study, 71,277 bovine carcasses and 2,016 buffalo carcasses were inspected, of which 300 bovine and 71 buffalo were condemned. The highest prevalence of causes of condemnation in cattle was recorded for brucellosis (0.0020%) and tuberculosis (0.0019%). In buffaloes, tuberculosis (0.0307%) peritonitis (0,0019%) were the main causes of condemnations. Economical losses were more evident in females, for both species. The projection of economical losses related to the condemnation of carcasses showed a sharp growth for the next three years, if the average growth remains constant. The biggest projected loss was for bovine females, with an accumulated projection of $ 5,451.44. The smallest estimated loss was for buffalo males, projected at more than thirty-two thousand reais. The most important causes of condemnation report the diseases brucellosis and tuberculosis, as the ones with the greatest impact. In the buffalo species this was even more accentuated, even though the number of buffaloes slaughtered is more than 35 times smaller than the number of cattle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marina de Nadai Bonin
- Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | | | | | - José de Brito Lourenço
- Graduate program in Animal Science (PPGCAN) of the Federal University of Pará (UFPA), Castanhal, Pará, Brazil
| |
Collapse
|
5
|
Yang XY, Gong QL, Li YJ, Ata EB, Hu MJ, Sun YY, Xue ZY, Yang YS, Sun XP, Shi CW, Yang GL, Huang HB, Jiang YL, Wang JZ, Cao X, Wang N, Zeng Y, Yang WT, Wang CF. The global prevalence of highly pathogenic avian influenza A (H5N8) infection in birds: A systematic review and meta-analysis. Microb Pathog 2023; 176:106001. [PMID: 36682670 DOI: 10.1016/j.micpath.2023.106001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
The zoonotic pathogen avian influenza A H5N8 causes enormous economic losses in the poultry industry and poses a serious threat to the public health. Here, we report the first systematic review and meta-analysis of the worldwide prevalence of birds. We filtered 45 eligible articles from seven databases. A random-effects model was used to analyze the prevalence of H5N8 in birds. The pooled prevalence of H5N8 in birds was 1.6%. In the regions, Africa has the highest prevalence (8.0%). Based on the source, village (8.3%) was the highest. In the sample type, the highest prevalence was organs (79.7%). In seasons, the highest prevalence was autumn (28.1%). The largest prevalence in the sampling time was during 2019 or later (7.0%). Furthermore, geographical factors also were associated with the prevalence. Therefore, we recommend site-specific prevention and control tools for this strain in birds and enhance the surveillance to reduce the spread of H5N8.
Collapse
Affiliation(s)
- Xue-Yao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Qing-Long Gong
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Jin Li
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Emad Beshir Ata
- Parasitology and Animal Diseases Dep., Vet. Res. Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Man-Jie Hu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yong-Yang Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Zhi-Yang Xue
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Ying-Shi Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xue-Pan Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xin Cao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Nan Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
6
|
Ag85a-S2 Activates cGAS-STING Signaling Pathway in Intestinal Mucosal Cells. Vaccines (Basel) 2022; 10:vaccines10122170. [PMID: 36560581 PMCID: PMC9785823 DOI: 10.3390/vaccines10122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a zoonotic disease caused by Gram-negative bacteria. Most of the brucellosis vaccines in the application are whole-bacteria vaccines. Live-attenuated vaccines are widely used for brucellosis prevention in sheep, goats, pigs, and cattle. Thus, there is also a need for an adjuvanted vaccine for human brucellosis, because the attenuated Brucella vaccines now utilized in animals cause human illness. Here, we developed a live-attenuated Brucella suis strain 2 vaccine (S2) adjuvanted with Ag85a (Ag85a-S2). We found that Ag85a-S2 activated cGAS-STING pathways both in intestinal mucosal cells in vivo and in the BMDM and U937 cell line in vitro. We demonstrated that the cGAS knockout significantly downregulated the abundance of interferon and other cytokines induced by Ag85a-S2. Moreover, Ag85a-S2 triggered a stronger cellular immune response compared to S2 alone. In sum, Ag85a-S2-mediated enhancement of immune responses was at least partially dependent on the cGAS-STING pathway. Our results provide a new candidate for preventing Brucella pathogens from livestock, which might reduce the dosage and potential toxicity compared to S2.
Collapse
|
7
|
Possible Consequences of Climate Change on Survival, Productivity and Reproductive Performance, and Welfare of Himalayan Yak (Bos grunniens). Vet Sci 2022; 9:vetsci9080449. [PMID: 36006364 PMCID: PMC9413344 DOI: 10.3390/vetsci9080449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Climate change is a global issue, with a wide range of ecosystems being affected by changing climatic conditions including the Himalaya. Yak are exquisitely adapted to the high-altitude conditions of the Himalaya and are thus highly likely to be affected by climate change. This paper reviews the evidence of how the reported impacts of climate change on the environment and ecosystem of the Himalaya are affecting the survival, productivity and welfare of Himalayan Yak. This review identified that we do not know how big the impact of climate change is on yak as very few papers have measured that impact and, in many cases, potentially climate-change-related effects (such as changes in feed supply) are principally driven by human factors. Abstract Yak are adapted to the extreme cold, low oxygen, and high solar radiation of the Himalaya. Traditionally, they are kept at high altitude pastures during summer, moving lower in the winter. This system is highly susceptible to climate change, which has increased ambient temperatures, altered rainfall patterns and increased the occurrence of natural disasters. Changes in temperature and precipitation reduced the yield and productivity of alpine pastures, principally because the native plant species are being replaced by less useful shrubs and weeds. The impact of climate change on yak is likely to be mediated through heat stress, increased contact with other species, especially domestic cattle, and alterations in feed availability. Yak have a very low temperature humidity index (52 vs. 72 for cattle) and a narrow thermoneutral range (5–13 °C), so climate change has potentially exposed yak to heat stress in summer and winter. Heat stress is likely to affect both reproductive performance and milk production, but we lack the data to quantify such effects. Increased contact with other species, especially domestic cattle, is likely to increase disease risk. This is likely to be exacerbated by other climate-change-associated factors, such as increases in vector-borne disease, because of increases in vector ranges, and overcrowding associated with reduced pasture availability. However, lack of baseline yak disease data means it is difficult to quantify these changes in disease risk and the few papers claiming to have identified such increases do not provide robust evidence of increased diseases. The reduction in feed availability in traditional pastures may be thought to be the most obvious impact of climate change on yak; however, it is clear that such a reduction is not solely due to climate change, with socio-economic factors likely being more important. This review has highlighted the large potential negative impact of climate change on yak, and the lack of data quantifying that impact. More research on the impact of climate change in yak is needed. Attention also needs to be paid to developing mitigating strategies, which may include changes in the traditional system such as providing shelter and supplementary feed and, in marginal areas, increased use of yak–cattle hybrids.
Collapse
|